Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Nat Med ; 30(4): 990-1000, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38605166

ABSTRACT

Children with rare, relapsed or refractory cancers often face limited treatment options, and few predictive biomarkers are available that can enable personalized treatment recommendations. The implementation of functional precision medicine (FPM), which combines genomic profiling with drug sensitivity testing (DST) of patient-derived tumor cells, has potential to identify treatment options when standard-of-care is exhausted. The goal of this prospective observational study was to generate FPM data for pediatric patients with relapsed or refractory cancer. The primary objective was to determine the feasibility of returning FPM-based treatment recommendations in real time to the FPM tumor board (FPMTB) within a clinically actionable timeframe (<4 weeks). The secondary objective was to assess clinical outcomes from patients enrolled in the study. Twenty-five patients with relapsed or refractory solid and hematological cancers were enrolled; 21 patients underwent DST and 20 also completed genomic profiling. Median turnaround times for DST and genomics were within 10 days and 27 days, respectively. Treatment recommendations were made for 19 patients (76%), of whom 14 received therapeutic interventions. Six patients received subsequent FPM-guided treatments. Among these patients, five (83%) experienced a greater than 1.3-fold improvement in progression-free survival associated with their FPM-guided therapy relative to their previous therapy, and demonstrated a significant increase in progression-free survival and objective response rate compared to those of eight non-guided patients. The findings from our proof-of-principle study illustrate the potential for FPM to positively impact clinical care for pediatric and adolescent patients with relapsed or refractory cancers and warrant further validation in large prospective studies. ClinicalTrials.gov registration: NCT03860376 .


Subject(s)
Hematologic Neoplasms , Neoplasms , Adolescent , Child , Humans , Precision Medicine , Prospective Studies , Feasibility Studies , Neoplasms/genetics , Neoplasms/therapy
2.
Med Int (Lond) ; 4(2): 11, 2024.
Article in English | MEDLINE | ID: mdl-38410758

ABSTRACT

With declining exposures to manganese (Mn) in occupational settings, there is a need for more sensitive exposure assessments and clinical diagnostic criteria for manganism and Mn neurotoxicity. To address this issue, a workshop was held on November 12-13, 2020, with international experts on Mn toxicity. The workshop discussions focused on the history of the diagnostic criteria for manganism, including those developed by the Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST) in Quebec in 2005 and criteria developed by the Chinese government in 2002 and updated in 2006; the utility of biomarkers of exposure; recent developments in magnetic resonance imaging (MRI) for assessing Mn accumulation in the brain and diagnosing manganism; and potential future applications of metabolomics. The suggestions of the participants for updating manganism diagnostic criteria included the consideration of: i) A history of previous occupational and environmental exposure to Mn; ii) relevant clinical symptoms such as dystonia; iii) MRI imaging to document Mn accumulation in the neural tissues, including the basal ganglia; and iv) criteria for the differential diagnosis of manganism and other neurological conditions. Important research gaps include the characterization of Mn exposure and other co-exposures, exploration of the roles of different brain regions with MRI, understanding the complexity of metal ion transporters involved in Mn homeostasis, and a need for information on other neurotransmitter systems and brain regions underlying the pathophysiology of manganism.

3.
Environ Health Perspect ; 131(8): 81306, 2023 08.
Article in English | MEDLINE | ID: mdl-37639478

Subject(s)
Lead , Lead/toxicity
4.
Int J Mol Sci ; 23(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36361624

ABSTRACT

Over the last decade, several clinical reports have outlined cases of childhood-onset manganese (Mn)-induced dystonia-parkinsonism, resulting from loss-of-function mutations in the Mn influx transporter gene SLC39A14. These clinical cases have provided a wealth of knowledge on Mn toxicity and homeostasis. However, our current understanding of the underlying neuropathophysiology is severely lacking. The recent availability of Slc39a14 knockout (KO) murine and zebrafish animal models provide a powerful platform to investigate the neurological effects of elevated blood and brain Mn concentrations in vivo. As such, the objective of this review was to organize and summarize the current clinical literature and studies utilizing Slc39a14-KO animal models and assess the validity of the animal models based on the clinical presentation of the disease in human mutation carriers.


Subject(s)
Cation Transport Proteins , Dystonia , Dystonic Disorders , Parkinsonian Disorders , Humans , Animals , Mice , Manganese/metabolism , Dystonia/genetics , Cation Transport Proteins/genetics , Zebrafish/genetics , Zebrafish/metabolism , Dystonic Disorders/genetics , Parkinsonian Disorders/genetics , Mutation , Ions , Models, Animal
5.
Neurotoxicology ; 93: 92-102, 2022 12.
Article in English | MEDLINE | ID: mdl-36152728

ABSTRACT

Over the last decade, several clinical reports have outlined cases of early-onset manganese (Mn)-induced dystonia-parkinsonism, resulting from loss of function mutations of the Mn transporter gene SLC39A14. Previously, we have performed characterization of the behavioral, neurochemical, and neuropathological changes in 60-day old (PN60) Slc39a14-knockout (KO) murine model of the human disease. Here, we extend our studies to aging Slc39a14-KO mice to assess the progression of the disease. Our results indicate that 365-day old (PN365) Slc39a14-KO mice present with markedly elevated blood and brain Mn levels, similar to those found in the PN60 mice and representative of the human cases of the disease. Furthermore, aging Slc39a14-KO mice consistently manifest a hypoactive and dystonic behavioral deficits, similar to the PN60 animals, suggesting that the behavioral changes are established early in life without further age-associated deterioration. Neurochemical, neuropathological, and functional assessment of the dopaminergic system of the basal ganglia revealed absence of neurodegenerative changes of dopamine (DA) neurons in the substantia nigra pars compacta (SNc), with no changes in DA or metabolite concentrations in the striatum of Slc39a14-KO mice relative to wildtype (WT). Similar to the PN60 animals, aging Slc39a14-KO mice expressed a marked inhibition of potassium-stimulated DA release in the striatum. Together our findings indicate that the pathophysiological changes observed in the basal ganglia of aging Slc39a14-KO animals are similar to those at PN60 and aging does not have a significant effect on these parameters.


Subject(s)
Cation Transport Proteins , Dystonia , Parkinsonian Disorders , Animals , Mice , Humans , Manganese/metabolism , Mice, Knockout , Dystonia/chemically induced , Dystonia/genetics , Dystonia/metabolism , Cation Transport Proteins/genetics , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/metabolism , Aging , Substantia Nigra
6.
Front Mol Neurosci ; 15: 946726, 2022.
Article in English | MEDLINE | ID: mdl-36090247

ABSTRACT

Exposure to heavy metals has been associated with psychiatric disorders and recent studies suggest an association between childhood lead (Pb2+) intoxication and schizophrenia (SZ). In animal models, Pb2+ exposure recapitulates key neuropathological and dopaminergic system alterations present in SZ. Given the high comorbidity of mental disorders such as SZ and substance abuse, coupled with evidence showing that Pb2+ exposure affects addiction circuits, we hypothesized that early life Pb2+ exposure could sensitize neuronal systems relevant to SZ and substance abuse. To this goal, we examined the effects of chronic developmental Pb2+ exposure on the acute locomotor response to cocaine (0, 5, and 15 mg kg-1) and behavioral sensitization. We also examined the role of the dopaminergic system in the psychostimulant effects of cocaine, and measured D1-dopamine receptor (D1R) levels in the rat brain using [3H]-SCH23390 quantitative receptor autoradiography, as well as the ability of the D1R antagonist SCH23390 to block the cocaine effects on locomotor activation. These studies were performed in male and female rats at different developmental ages consisting of juveniles (postnatal, PN14), early-adolescent (PN28), late adolescent (PN50), and adults (PN120). Our results show that chronic developmental Pb2+ exposure increases the acute locomotor response to the higher dose of cocaine in Pb2+-exposed male adolescent (PN28 and PN50) rats, and to the lower dose of cocaine in adolescent female rats. No changes in the locomotor activity were detected in adult rats. Behavioral sensitization experiments showed a sustained sensitization in early adolescent Pb2+-exposed male but not female rats. The cocaine-induced effects on locomotor activity were abrogated by injection of a D1R antagonist suggesting the involvement of this dopamine receptor subtype. Furthermore, Pb2+-induced increases D1R levels in several brain regions were prominent in juveniles and early adolescence but not in late adolescence or in adults. In summary, early chronic developmental Pb2+ exposure results in age and sex-dependent effect on the locomotor response to cocaine, suggesting differential susceptibilities to the neurotoxic effects of Pb2+ exposure. Our data provides further support to the notion that Pb2+ exposure is an environmental risk factor for psychiatric disorders and substance abuse.

8.
Pharmacol Ther ; 234: 108048, 2022 06.
Article in English | MEDLINE | ID: mdl-34848203

ABSTRACT

Translocator Protein 18 kDa (TSPO), previously named Peripheral Benzodiazepine Receptor, is a well-validated and widely used biomarker of neuroinflammation to assess diverse central nervous system (CNS) pathologies in preclinical and clinical studies. Many studies have shown that in animal models of human neurological and neurodegenerative disease and in the human condition, TSPO levels increase in the brain neuropil, and this increase is driven by infiltration of peripheral inflammatory cells and activation of glial cells. Therefore, a clear understanding of the dynamics of the cellular sources of the TSPO response is critically important in the interpretation of Positron Emission Tomography (PET) studies and for understanding the pathophysiology of CNS diseases. Within the normal brain compartment, there are tissues and cells such as the choroid plexus, ependymal cells of the lining of the ventricles, and vascular endothelial cells that also express TSPO at even higher levels than in glial cells. However, there is a paucity of knowledge if these cell types respond and increase TSPO in the diseased brain. These cells do provide a background signal that needs to be accounted for in TSPO-PET imaging studies. More recently, there are reports that TSPO may be expressed in neurons of the adult brain and TSPO expression may be increased by neuronal activity. Therefore, it is essential to study this topic with a great deal of detail, methodological rigor, and rule out alternative interpretations and imaging artifacts. High levels of TSPO are present in the outer mitochondrial membrane. Recent studies have provided evidence of its localization in other cellular compartments including the plasma membrane and perinuclear regions which may define functions that are different from that in mitochondria. A greater understanding of the TSPO subcellular localization in glial cells and infiltrating peripheral immune cells and associated function(s) may provide an additional layer of information to the understanding of TSPO neurobiology. This review is an effort to outline recent advances in understanding the cellular sources and subcellular localization of TSPO in brain cells and to examine remaining questions that require rigorous investigation.


Subject(s)
Neurodegenerative Diseases , Receptors, GABA , Animals , Brain/diagnostic imaging , Brain/metabolism , Endothelial Cells/metabolism , Humans , Neurodegenerative Diseases/metabolism , Neuroinflammatory Diseases , Positron-Emission Tomography/methods , Receptors, GABA/metabolism
10.
Cancers (Basel) ; 13(18)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34572751

ABSTRACT

Glioblastoma (GBM) is the most common primary brain tumor in adults, with few available therapies and a five-year survival rate of 7.2%. Hence, strategies for improving GBM prognosis are urgently needed. The translocator protein 18kDa (TSPO) plays crucial roles in essential mitochondria-based physiological processes and is a validated biomarker of neuroinflammation, which is implicated in GBM progression. The TSPO gene has a germline single nucleotide polymorphism, rs6971, which is the most common SNP in the Caucasian population. High TSPO gene expression is associated with reduced survival in GBM patients; however, the relation between the most frequent TSPO genetic variant and GBM pathogenesis is not known. The present study retrospectively analyzed the correlation of the TSPO polymorphic variant rs6971 with overall and progression-free survival in GBM patients using three independent cohorts. TSPO rs6971 polymorphism was significantly associated with shorter overall survival and progression-free survival in male GBM patients but not in females in one large cohort of 441 patients. We observed similar trends in two other independent cohorts. These observations suggest that the TSPO rs6971 polymorphism could be a significant predictor of poor prognosis in GBM, with a potential for use as a prognosis biomarker in GBM patients. These results reveal for the first time a biological sex-specific relation between rs6971 TSPO polymorphism and GBM.

11.
Neurobiol Dis ; 158: 105467, 2021 10.
Article in English | MEDLINE | ID: mdl-34358615

ABSTRACT

Inherited autosomal recessive mutations of the manganese (Mn) transporter gene SLC39A14 in humans, results in elevated blood and brain Mn concentrations and childhood-onset dystonia-parkinsonism. The pathophysiology of this disease is unknown, but the nigrostriatal dopaminergic system of the basal ganglia has been implicated. Here, we describe pathophysiological studies in Slc39a14-knockout (KO) mice as a preclinical model of dystonia-parkinsonism in SLC39A14 mutation carriers. Blood and brain metal concentrations in Slc39a14-KO mice exhibited a pattern similar to the human disease with highly elevated Mn concentrations. We observed an early-onset backward-walking behavior at postnatal day (PN) 21 which was also noted in PN60 Slc39a14-KO mice as well as dystonia-like movements. Locomotor activity and motor coordination were also impaired in Slc39a14-KO relative to wildtype (WT) mice. From a neurochemical perspective, striatal dopamine (DA) and metabolite concentrations and their ratio in Slc39a14-KO mice did not differ from WT. Striatal tyrosine hydroxylase (TH) immunohistochemistry did not change in Slc39a14-KO mice relative to WT. Unbiased stereological cell quantification of TH-positive and Nissl-stained estimated neuron number, neuron density, and soma volume in the substantia nigra pars compacta (SNc) was the same in Slc39a14-KO mice as in WT. However, we measured a marked inhibition (85-90%) of potassium-stimulated DA release in the striatum of Slc39a14-KO mice relative to WT. Our findings indicate that the dystonia-parkinsonism observed in this genetic animal model of the human disease is associated with a dysfunctional but structurally intact nigrostriatal dopaminergic system. The presynaptic deficit in DA release is unlikely to explain the totality of the behavioral phenotype and points to the involvement of other neuronal systems and brain regions in the pathophysiology of the disease.


Subject(s)
Behavior, Animal , Cation Transport Proteins/genetics , Dystonia/chemically induced , Manganese Poisoning/metabolism , Manganese Poisoning/psychology , Parkinson Disease, Secondary/chemically induced , Animals , Brain/metabolism , Dopamine/metabolism , Dystonia/genetics , Female , Male , Manganese Poisoning/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity , Neostriatum/metabolism , Parkinson Disease, Secondary/genetics , Psychomotor Performance , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/metabolism
12.
J Occup Environ Med ; 63(12): 1087-1092, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34354019

ABSTRACT

OBJECTIVE: To explore the interaction between chronic bronchitis and blood cadmium on the prevalence of myocardial infarction. METHODS: We used weighted US-NHANES data. Multivariate survey logistic regression was used to examine the associations between myocardial infarction, cadmium concentration and chronic bronchitis. Adjusted odds ratios, 95% confidence intervals were computed. RESULTS: There was a significant interaction (OR=1.33, CI = [1.01, 1.74]) between chronic bronchitis and blood cadmium level on the presence of myocardial infarction. For 1 µg/L increase in cadmium level, people with chronic bronchitis had 1.65 (1.24 × 1.33) times the odds of having myocardial infarction, while those without chronic bronchitis would be only 1.24 times as likely having the outcome (OR = 1.24, CI = [1.05, 1.46]). CONCLUSION: Findings highlights the role of chronic bronchitis on the relationship between blood cadmium concentration and myocardial infarction. Prospective cohort designs are needed to confirm these findings.


Subject(s)
Bronchitis, Chronic , Myocardial Infarction , Adult , Bronchitis, Chronic/epidemiology , Cadmium , Cross-Sectional Studies , Humans , Myocardial Infarction/epidemiology , Nutrition Surveys , Prevalence , Prospective Studies
13.
J Leukoc Biol ; 110(1): 123-140, 2021 07.
Article in English | MEDLINE | ID: mdl-33205494

ABSTRACT

Translocator protein 18 kDa (TSPO) is a well-known outer mitochondrial membrane protein and it is widely used as a biomarker of neuroinflammation and brain injury. Although it is thought that TSPO plays key roles in a multitude of host cell functions, including steroid biosynthesis, apoptosis, generation of reactive oxygen species, and proliferation, some of these functions have recently been questioned. Here, we report the unexpected finding that circulating immune cells differentially express basal levels of TSPO on their cell surface, with a high percentage of monocytes and neutrophils expressing cell surface TSPO. In vitro stimulation of monocytes with LPS significantly increases the frequency of cells with surface TSPO expression in the absence of altered gene expression. Importantly, the LPS increase in TSPO cell surface expression in monocytes appears to be selective for LPS because two other distinct monocyte activators failed to increase the frequency of cells with surface TSPO. Finally, when we quantified immune cell TSPO surface expression in antiretroviral therapy-treated HIV+ donors, a chronic inflammatory disease, we found significant increases in the frequency of TSPO surface localization, which could be pharmacologically suppressed with ∆9 -tetrahydrocannabinol. These findings suggest that cell surface TSPO in circulating leukocytes could serve as a peripheral blood-based biomarker of inflammation.


Subject(s)
HIV Infections/immunology , HIV Infections/metabolism , HIV Infections/virology , Lipopolysaccharides/adverse effects , Receptors, GABA/metabolism , Animals , Antiretroviral Therapy, Highly Active , Apoptosis , Biomarkers , Disease Susceptibility , HIV Infections/drug therapy , Humans , Inflammation/etiology , Inflammation/metabolism , Leukocytes/immunology , Leukocytes/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Protein Transport , Reactive Oxygen Species/metabolism , Receptors, GABA/genetics
14.
Neurotoxicology ; 82: 119-129, 2021 01.
Article in English | MEDLINE | ID: mdl-33248188

ABSTRACT

Childhood lead (Pb2+) intoxication is a global public health problem best known for producing deficits in learning and poor school performance. Human and preclinical studies have suggested an association between childhood Pb2+ intoxication and proclivity to substance abuse and delinquent behavior. While environmental factors have been implicated in opioid addiction, less is known about the role of exposure to environmental pollutants on the brain opioid system. Opioid receptors are involved in the biological effects of opioids and other drugs of abuse. In this study, we examine the effect of chronic developmental Pb2+ exposure (1500 ppm in the diet) on µ-opioid receptor (MOR) levels in the rat brain using [3H]-d-Ala2-MePhe4-Gly-ol5 enkephalin ([3H]-DAMGO) quantitative receptor autoradiography at different developmental stages (juvenile, early-adolescent, late adolescent and adult) in male and female rats. Our results indicate that chronic developmental Pb2+ exposure increases the levels of [3H]-DAMGO specific binding to MOR in juvenile and early adolescent Pb2+-exposed male and female rat brain with no changes in late-adolescent (PN50) and minor changes in Pb2+-exposed adult male rats (PN120). Specifically, at PN14, Pb2+-exposed males had an increase in MOR binding in the lateral posthalamic nuclei (LPTN), and Pb2+-exposed females had increased MOR binding in LPTN, medial thalamus, and hypothalamus. At PN28, Pb2+-exposed males had increased MOR levels in the striatum, stria medullaris of the thalamus, LPTN, medial thalamus, and basolateral amygdala, while Pb2+-exposed females showed an increase in nucleus accumbens core, LPTN, and medial thalamus. No changes were detected in any brain region of male and female rats at PN50, and at PN120 there was a decrease in MOR binding of Pb2+-exposed males in the medial thalamus. Our findings demonstrate age and gender specific effects of MOR levels in the rat brain as a result of chronic developmental Pb2+ exposure. These results indicate that the major changes in brain MOR levels were during pre-adolescence and early adolescence, a developmental period in which there is higher engagement in reward and drug-seeking behaviors in humans. In summary, we show that chronic exposure to Pb2+, an ubiquitous and well-known environmental contaminant and neurotoxicant, alters MOR levels in brain regions associated with addiction circuits in the adolescent period, these findings have important implications for opioid drug use and abuse.


Subject(s)
Brain Chemistry/drug effects , Lead Poisoning, Nervous System/metabolism , Receptors, Opioid, mu/analysis , Animals , Brain/drug effects , Brain/growth & development , Brain/metabolism , Female , Lead/blood , Lead Poisoning, Nervous System/complications , Male , Rats/growth & development , Rats, Long-Evans , Receptors, Opioid, mu/drug effects , Receptors, Opioid, mu/metabolism
15.
Mol Neurobiol ; 57(11): 4467-4487, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32743737

ABSTRACT

In the brain neuropil, translocator protein 18 kDa (TSPO) is a stress response protein that is upregulated in microglia and astrocytes in diverse central nervous system pathologies. TSPO is widely used as a biomarker of neuroinflammation in preclinical and clinical neuroimaging studies. However, there is a paucity of knowledge on the function(s) of TSPO in glial cells. In this study, we explored a putative interaction between TSPO and NADPH oxidase 2 (NOX2) in microglia. We found that TSPO associates with gp91phox and p22phox, the principal subunits of NOX2 in primary murine microglia. The association of TSPO with gp91phox and p22phox was observed using co-immunoprecipitation, confocal immunofluorescence imaging, and proximity ligation assay. We found that besides gp91phox and p22phox, voltage-dependent anion channel (VDAC) also co-immunoprecipitated with TSPO consistent with previous reports. When we compared lipopolysaccharide (LPS) stimulated microglia to vehicle control, we found that a lower amount of gp91phox and p22phox protein co-immunoprecipitated with TSPO suggesting a disruption of the TSPO-NOX2 subunits association. TSPO immuno-gold electron microscopy confirmed that TSPO is present in the outer mitochondrial membrane but it is also found in the endoplasmic reticulum (ER), mitochondria-associated ER membrane (MAM), and in the plasma membrane. TSPO localization at the MAM may represent a subcellular site where TSPO interacts with gp91phox and p22phox since the MAM is a point of communication between outer mitochondria membrane proteins (TSPO) and ER proteins (gp91phox and p22phox) where they mature and form the cytochrome b558 (Cytb558) heterodimer. We also found that an acute burst of reactive oxygen species (ROS) increased TSPO levels on the surface of microglia and this effect was abrogated by a ROS scavenger. These results suggest that ROS production may alter the subcellular distribution of TSPO. Collectively, our findings suggest that in microglia, TSPO is associated with the major NOX2 subunits gp91phox and p22phox. We hypothesize that this interaction may regulate Cytb558 formation and modulate NOX2 levels, ROS production, and redox homeostasis in microglia.


Subject(s)
Microglia/metabolism , NADPH Oxidases/metabolism , Receptors, GABA/metabolism , Animals , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , Female , HEK293 Cells , Heme/metabolism , Humans , Intracellular Membranes/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Microglia/ultrastructure , Mitochondria/metabolism , Models, Biological , Porphyrins/metabolism , Protein Binding , Reactive Oxygen Species/metabolism , Receptors, GABA/chemistry , Voltage-Dependent Anion Channels/metabolism
16.
Behav Neurosci ; 134(6): 529-546, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32672989

ABSTRACT

Delta-frequency network activity is commonly associated with sleep or behavioral disengagement accompanied by a dearth of cortical spiking, but delta in awake behaving animals is not well understood. We show that hippocampal (HC) synchronization in the delta frequency band (1-4 Hz) is related to animals' locomotor behavior using detailed analyses of the HC local field potential (LFP) and simultaneous head- and body-tracking data. In contrast to running-speed modulation of the theta rhythm (6-10 Hz), delta was most prominent when animals were stationary or moving slowly, that is, when theta and fast gamma (65-120 Hz) were weak, and often developed rapidly when animals paused briefly between runs. We next combined time-frequency decomposition of the LFP with hierarchical clustering algorithms to categorize momentary estimations of the power spectral density (PSD) into putative modes of HC activity. Delta and theta power were strikingly orthogonal across spectral modes, as well as across bouts of precisely defined running and stationary behavior. Delta-band and theta-band coherences between HC recording sites were monotonically related to theta-delta ratios across modes; and whereas theta coherence between HC and medial prefrontal cortex (mPFC) increased during running, delta-band coherence between mPFC and HC increased during stationary bouts. Taken together, our findings suggest that delta-dominated network modes (and corresponding mPFC-HC couplings) represent functionally distinct circuit dynamics that are temporally and behaviorally interspersed among theta-dominated modes during navigation. As such, delta modes could play a fundamental role in coordinating encoding and retrieval mechanisms or decision-making processes at a timescale that segments event sequences within behavioral episodes. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Subject(s)
Delta Rhythm , Hippocampus , Locomotion , Theta Rhythm , Wakefulness , Animals , Male , Prefrontal Cortex , Rats , Rats, Long-Evans
17.
Neuropsychopharmacology ; 45(7): 1086-1096, 2020 06.
Article in English | MEDLINE | ID: mdl-32109936

ABSTRACT

The etiologic pathways leading to neuropsychiatric diseases remain poorly defined. As genomic technologies have advanced over the past several decades, considerable progress has been made linking neuropsychiatric disorders to genetic underpinnings. Interest and consideration of nongenetic risk factors (e.g., lead exposure and schizophrenia) have, in contrast, lagged behind heritable frameworks of explanation. Thus, the association of neuropsychiatric illness to environmental chemical exposure, and their potential interactions with genetic susceptibility, are largely unexplored. In this review, we describe emerging approaches for considering the impact of chemical risk factors acting alone and in concert with genetic risk, and point to the potential role of epigenetics in mediating exposure effects on transcription of genes implicated in mental disorders. We highlight recent examples of research in nongenetic risk factors in psychiatric disorders that point to potential shared biological mechanisms-synaptic dysfunction, immune alterations, and gut-brain interactions. We outline new tools and resources that can be harnessed for the study of environmental factors in psychiatric disorders. These tools, combined with emerging experimental evidence, suggest that there is a need to broadly incorporate environmental exposures in psychiatric research, with the ultimate goal of identifying modifiable risk factors and informing new treatment strategies for neuropsychiatric disease.


Subject(s)
Environmental Exposure/adverse effects , Mental Disorders/etiology , Humans
18.
J Neurochem ; 150(2): 188-201, 2019 07.
Article in English | MEDLINE | ID: mdl-30720866

ABSTRACT

Humans and non-human primates exposed to excess levels of manganese (Mn) exhibit deficits in working memory and attention. Frontal cortex and fronto-striatal networks are implicated in working memory and these circuits rely on dopamine for optimal performance. Here, we aimed to determine if chronic Mn exposure alters in vivo dopamine release (DAR) in the frontal cortex of non-human primates. We used [11 C]-FLB457 positron emission tomography with amphetamine challenge to measure DAR in Cynomolgus macaques. Animals received [11 C]-FLB457 positron emission tomography scans with and without amphetamine challenge prior to Mn exposure (baseline), at different time points during the Mn exposure period, and after 10 months of Mn exposure cessation. Four of six Mn-exposed animals expressed significant impairment of frontal cortex in vivo DAR relative to baseline. One Mn animal had no change in DAR and another Mn animal expressed increased DAR relative to baseline. In the reversal studies, one Mn-exposed animal exhibited complete recovery of DAR while the second animal had partial recovery. In both animals, frontal cortex Mn concentrations normalized after 10 months of exposure cessation based on T1-weighted magnetic resonance imaging. D1-dopamine receptor (D1R) autoradiography in frontal cortex tissue indicates that Mn animals that experienced cessation of Mn exposure expressed D1R levels that were approximately 50% lower than Mn animals that did not experience cessation of Mn exposure or control animals. The present study provides evidence of Mn-induced alterations in frontal cortex DAR and D1R that may be associated with working memory and attention deficits observed in Mn-exposed subjects.


Subject(s)
Dopamine/metabolism , Frontal Lobe/drug effects , Manganese/toxicity , Animals , Attention/drug effects , Dopamine/analysis , Frontal Lobe/metabolism , Macaca fascicularis , Memory, Short-Term/drug effects , Positron-Emission Tomography , Receptors, Dopamine/drug effects , Receptors, Dopamine/metabolism
19.
Pharmacol Ther ; 194: 44-58, 2019 02.
Article in English | MEDLINE | ID: mdl-30189290

ABSTRACT

The use of Translocator Protein 18 kDa (TSPO) as a clinical neuroimaging biomarker of brain injury and neuroinflammation has increased exponentially in the last decade. There has been a furious pace in the development of new radiotracers for TSPO positron emission tomography (PET) imaging and its use has now been extensively described in many neurological and mental disorders. This fast pace of research and the ever-increasing number of new laboratories entering the field often times lack an appreciation of the historical perspective of the field and introduce dogmatic, but unproven facts, related to the underlying neurobiology of the TSPO response to brain injury and neuroinflammation. Paradoxically, while in neurodegenerative disorders and in all types of CNS pathologies brain TSPO levels increase, a new observation in psychiatric disorders such as schizophrenia is decreased brain levels of TSPO measured by PET. The neurobiological bases for this new finding is currently not known, but rigorous experimental design using multiple experimental approaches and careful interpretation of results is critically important to provide the methodological and/or biological underpinnings to this new observation. This review provides a perspective of the early history of validating TSPO as a biomarker of brain injury and neuroinflammation and a critical analysis of controversial topics in the literature related to the cellular sources of the TSPO response. The latter is important in order to provide the correct interpretation of PET studies in neurodegenerative and psychiatric disorders. Furthermore, this review proposes some yet to be explored explanations to new findings in psychiatric disorders and new approaches to quantitatively assess the glial sources of the TSPO response in order to move the field forward.


Subject(s)
Brain/metabolism , Central Nervous System Diseases/metabolism , Receptors, GABA/metabolism , Animals , Biomarkers/metabolism , Humans , Mental Disorders/metabolism , Neuroglia/metabolism , Receptors, GABA-A
SELECTION OF CITATIONS
SEARCH DETAIL
...