Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Hum Gene Ther ; 35(9-10): 355-364, 2024 May.
Article in English | MEDLINE | ID: mdl-38581431

ABSTRACT

Recombinant adeno-associated virus (rAAV) vectors appear, more than ever, to be efficient viral vectors for in vivo gene transfer as illustrated by the approvals of 7 drugs across Europe and the United States. Nevertheless, preexisting immunity to AAV capsid in humans remains one of the major limits for a successful clinical translation. Whereas a preexisting humoral response to AAV capsid is well documented, the prevalence of preexisting capsid-specific T cell responses still needs to be studied and characterized. In this study, we investigated the prevalence of AAV-specific circulating T cells toward AAV2, 4, 5, 8, 9, and rh10 in a large cohort of healthy donors using the standard IFNγ ELISpot assay. We observed the highest prevalence of preexisting cellular immunity to AAV9 serotype followed by AAV8, AAV4, AAV2, AAVrh10, and AAV5 independently of the donors' serological status. An in-depth analysis of T cell responses toward the 2 most prevalent serotypes 8 and 9 shows that IFNγ secretion is mainly mediated by CD8 T cells for both serotypes. A polyfunctional analysis reveals different cytokine profiles between AAV8 and AAV9. Surprisingly, no IL-2 secretion was mediated by anti-AAV9 immune cells suggesting that these cells may rather be exhausted or terminally differentiated than cytotoxic T cells. Altogether, these results suggest that preexisting immunity to AAV may vary depending on the serotype and support the necessity of using multiparametric monitoring methods to better characterize anticapsid cellular immunity and foresee its impact in rAAV-mediated clinical trials.


Subject(s)
Capsid Proteins , Dependovirus , Genetic Vectors , Immunity, Cellular , Humans , Dependovirus/genetics , Dependovirus/immunology , Capsid Proteins/immunology , Capsid Proteins/genetics , Genetic Vectors/genetics , Healthy Volunteers , Capsid/immunology , CD8-Positive T-Lymphocytes/immunology , Interferon-gamma/metabolism , Adult , Serogroup , Male , Female , Cytokines/metabolism , T-Lymphocytes/immunology
2.
Biomed Pharmacother ; 171: 116148, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38232661

ABSTRACT

Decades of biological and clinical research have led to important advances in recombinant adeno-associated viruses rAAV-based gene therapy gene therapy. However, several challenges must be overcome to fully exploit the potential of rAAV vectors. Innovative approaches to modify viral genome and capsid elements have been used to overcome issues such as unwanted immune responses and off-targeting. While often successful, genetic modification of capsids can drastically reduce vector yield and often fails to produce vectors with properties that translate across different animal species, such as rodents, non-human primates, and humans. Here, we describe a chemical bioconjugation strategy to modify tyrosine residues on AAV capsids using specific ligands, thereby circumventing the need to genetically engineer the capsid sequence. Aromatic electrophilic substitution of the phenol ring of tyrosine residues on AAV capsids improved the in vivo transduction efficiency of rAAV2 vectors in both liver and retinal targets. This tyrosine bioconjugation strategy represents an innovative technology for the engineering of rAAV vectors for human gene therapy.


Subject(s)
Dependovirus , Genetic Therapy , Animals , Transduction, Genetic , Tyrosine/genetics , Liver , Retina , Capsid Proteins/genetics , Genetic Vectors , Gene Transfer Techniques
3.
Int J Mol Sci ; 24(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37445621

ABSTRACT

Recombinant Adeno-Associated Virus (rAAV) is considered as one of the most successful and widely used viral vectors for in vivo gene therapy. However, host immune responses to the vector and/or the transgene product remain a major hurdle to successful AAV gene transfer. In contrast to antivector adaptive immunity, the initiation of the innate immunity towards rAAV is still poorly understood but is directly dependent on the interaction between the viral vector and innate immune cells. Here, we used a quantitative transcriptomic-based approach to determine the activation of inflammatory and anti-viral pathways after rAAV8-based infection of monocyte-derived dendritic cells (moDCs) obtained from 12 healthy human donors. We have shown that rAAV8 particles are efficiently internalized, but that this uptake does not induce any detectable transcriptomic change in moDCs in contrast to an adenoviral infection, which upregulates anti-viral pathways. These findings suggest an immunologically favorable profile for rAAV8 serotype with regard to in vitro activation of moDC model. Transcriptomic analysis of rAAV-infected innate immune cells is a powerful method to determine the ability of the viral vector to be seen by these sensor cells, which remains of great importance to better understand the immunogenicity of rAAV vectors and to design immune-stealth products.


Subject(s)
Monocytes , Transcriptome , Humans , Genetic Vectors/genetics , Adaptive Immunity , Dendritic Cells , Dependovirus/genetics
4.
Blood ; 141(19): 2316-2329, 2023 05 11.
Article in English | MEDLINE | ID: mdl-36790505

ABSTRACT

Adeno-associated virus (AAV) vectors have been successfully exploited in gene therapy applications for the treatment of several genetic disorders. AAV is considered an episomal vector, but it has been shown to integrate within the host cell genome after the generation of double-strand DNA breaks or nicks. Although AAV integration raises some safety concerns, it can also provide therapeutic benefit; the direct intrathymic injection of an AAV harboring a therapeutic transgene results in integration in T-cell progenitors and long-term T-cell immunity. To assess the mechanisms of AAV integration, we retrieved and analyzed hundreds of AAV integration sites from lymph node-derived mature T cells and compared these with liver and brain tissue from treated mice. Notably, we found that although AAV integrations in the liver and brain were distributed across the entire mouse genome, >90% of the integrations in T cells were clustered within the T-cell receptor α, ß, and γ genes. More precisely, the insertion mapped to DNA breaks created by the enzymatic activity of recombination activating genes (RAGs) during variable, diversity, and joining recombination. Our data indicate that RAG activity during T-cell receptor maturation induces a site-specific integration of AAV genomes and opens new therapeutic avenues for achieving long-term AAV-mediated gene transfer in dividing cells.


Subject(s)
Genetic Therapy , Genetic Vectors , Mice , Animals , Genetic Vectors/genetics , Transgenes , Plasmids , Genetic Therapy/methods , Receptors, Antigen, T-Cell/genetics , Dependovirus/genetics , Virus Integration
5.
Mol Ther Methods Clin Dev ; 20: 660-674, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33718516

ABSTRACT

Adeno-associated virus (AAV) vectors are considered efficient vectors for gene transfer, as illustrated by recent successful clinical trials targeting retinal or neurodegenerative disorders. However, limitations as host immune responses to AAV capsid or transduction of limited regions must still be overcome. Here, we focused on locoregional (LR) intravenous perfusion vector delivery that allows transduction of large muscular areas and is considered to be less immunogenic than intramuscular (IM) injection. To confirm this hypothesis, we injected 6 cynomolgus monkeys with an AAV serotype 8 (AAV8) vector encoding for the highly immunogenic GFP driven by either a muscle-specific promoter (n = 3) or a cytomegalovirus (CMV) promoter (n = 3). We report that LR delivery allows long-term GFP expression in the perfused limb (up to 1 year) despite the initiation of a peripheral transgene-specific immune response. The analysis of the immune status of the perfused limb shows that LR delivery induces persisting inflammation. However, this inflammation is not sufficient to result in transgene clearance and is balanced by resident regulatory T cells. Overall, our results suggest that LR delivery promotes persisting transgene expression by induction of Treg cells in situ and might be a safe alternative to IM route to target large muscle territories for the expression of secreted therapeutic factors.

6.
J Allergy Clin Immunol ; 145(2): 679-697.e5, 2020 02.
Article in English | MEDLINE | ID: mdl-31513879

ABSTRACT

BACKGROUND: Patients with T-cell immunodeficiencies are generally treated with allogeneic hematopoietic stem cell transplantation, but alternatives are needed for patients without matched donors. An innovative intrathymic gene therapy approach that directly targets the thymus might improve outcomes. OBJECTIVE: We sought to determine the efficacy of intrathymic adeno-associated virus (AAV) serotypes to transduce thymocyte subsets and correct the T-cell immunodeficiency in a zeta-associated protein of 70 kDa (ZAP-70)-deficient murine model. METHODS: AAV serotypes were injected intrathymically into wild-type mice, and gene transfer efficiency was monitored. ZAP-70-/- mice were intrathymically injected with an AAV8 vector harboring the ZAP70 gene. Thymus structure, immunophenotyping, T-cell receptor clonotypes, T-cell function, immune responses to transgenes and autoantibodies, vector copy number, and integration were evaluated. RESULTS: AAV8, AAV9, and AAV10 serotypes all transduced thymocyte subsets after in situ gene transfer, with transduction of up to 5% of cells. Intrathymic injection of an AAV8-ZAP-70 vector into ZAP-70-/- mice resulted in a rapid thymocyte differentiation associated with the development of a thymic medulla. Strikingly, medullary thymic epithelial cells expressing the autoimmune regulator were detected within 10 days of gene transfer, correlating with the presence of functional effector and regulatory T-cell subsets with diverse T-cell receptor clonotypes in the periphery. Although thymocyte reconstitution was transient, gene-corrected peripheral T cells harboring approximately 1 AAV genome per cell persisted for more than 40 weeks, and AAV vector integration was detected. CONCLUSIONS: Intrathymic AAV-transduced progenitors promote a rapid restoration of the thymic architecture, with a single wave of thymopoiesis generating long-term peripheral T-cell function.


Subject(s)
Genetic Therapy/methods , Thymocytes , Transduction, Genetic/methods , ZAP-70 Protein-Tyrosine Kinase , Animals , Dependovirus , Genetic Vectors , Immunologic Deficiency Syndromes/therapy , Mice , Mice, Knockout , ZAP-70 Protein-Tyrosine Kinase/administration & dosage , ZAP-70 Protein-Tyrosine Kinase/genetics
7.
Hum Gene Ther ; 30(7): 802-813, 2019 07.
Article in English | MEDLINE | ID: mdl-30808235

ABSTRACT

Anti-transgene immune responses elicited after intramuscular (i.m.) delivery of recombinant adeno-associated virus (rAAV) have been shown to hamper long-term transgene expression in large-animal models of rAAV-mediated gene transfer. To overcome this hurdle, an alternative mode of delivery of rAAV vectors in nonhuman primate muscles has been described: the locoregional (LR) intravenous route of administration. Using this injection mode, persistent inducible transgene expression for at least 1 year under the control of the tetracycline-inducible Tet-On system was previously reported in cynomolgus monkeys, with no immunity against the rtTA transgene product. The present study shows the long-term follow-up of these animals. It is reported that LR delivery of a rAAV2/1 vector allows long-term inducible expression up to at least 5 years post gene transfer, with no any detectable host immune response against the transactivator rtTA, despite its immunogenicity following i.m. gene transfer. This study shows for the first time a long-term regulation of muscle gene expression using a Tet-On-inducible system in a large-animal model. Moreover, these findings further confirm that the rAAV LR delivery route is efficient and immunologically safe, allowing long-term skeletal muscle gene transfer.


Subject(s)
Dependovirus/genetics , Gene Expression , Gene Transfer Techniques , Genetic Vectors/genetics , Transgenes , Animals , Antibodies, Viral/immunology , Cytokines/metabolism , Dependovirus/immunology , Follow-Up Studies , Genetic Vectors/administration & dosage , Genetic Vectors/adverse effects , Genome, Viral , Immunity , Macaca fascicularis , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Time Factors
8.
Chem Sci ; 11(4): 1122-1131, 2019 Dec 09.
Article in English | MEDLINE | ID: mdl-34084369

ABSTRACT

Gene delivery vectors based on adeno-associated virus (AAV) are highly promising due to several desirable features of this parent virus, including a lack of pathogenicity, efficient infection of dividing and non-dividing cells and sustained maintenance of the viral genome. However, the conclusion from clinical data using these vectors is that there is a need to develop new AAVs with a higher transduction efficiency and specificity for relevant target tissues. To overcome these limitations, we chemically modified the surface of the capsid of AAV vectors. These modifications were achieved by chemical coupling of a ligand by the formation of a thiourea functionality between the amino group of the capsid proteins and the reactive isothiocyanate motif incorporated into the ligand. This strategy does not require genetic engineering of the capsid sequence. The proof of concept was first evidenced using a fluorophore (FITC). Next, we coupled the N-acetylgalactosamine ligand onto the surface of the AAV capsid for asialoglycoprotein receptor-mediated hepatocyte-targeted delivery. Chemically-modified capsids also showed reduced interactions with neutralizing antibodies. Taken together, our findings reveal the possibility of creating a specific engineered platform for targeting AAVs via chemical coupling.

9.
Front Immunol ; 10: 3110, 2019.
Article in English | MEDLINE | ID: mdl-32038634

ABSTRACT

Pre-existing immunity to AAV capsid may compromise the safety and efficiency of rAAV-mediated gene transfer in patients. Anti-capsid cytotoxic immune responses have proven to be a challenge to characterize because of the scarcity of circulating AAV-specific CD8+ T lymphocytes which can seldom be detected with conventional flow cytometry or ELISpot assays. Here, we used fluorescent MHC class I tetramers combined with magnetic enrichment to detect and phenotype AAV8-specific CD8+ T cells in human PBMCs without prior amplification. We showed that all healthy individuals tested carried a pool of AAV8-specific CD8+ T cells with a CD45RA+ CCR7- terminally-differentiated effector memory cell (TEMRA) fraction. Ex vivo frequencies of total AAV-specific CD8+ T cells were not predictive of IFNγ ELISpot responses but interestingly we evidenced a correlation between the proportion of TEMRA cells and IFNγ ELISpot positive responses. TEMRA cells may then play a role in recombinant AAV-mediated cytotoxicity in patients with preexisting immunity. Overall, our results encourage the development of new methods combining increased detection sensitivity of AAV-specific T cells and their poly-functional assessment to better characterize and monitor AAV capsid-specific cellular immune responses in the perspective of rAAV-mediated clinical trials.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Dependovirus/immunology , Genetic Vectors/immunology , Adult , Aged , Capsid Proteins/genetics , Capsid Proteins/immunology , Dependovirus/genetics , Female , Genetic Therapy/instrumentation , Genetic Vectors/genetics , Humans , Immunologic Memory , Interferon-gamma/genetics , Interferon-gamma/immunology , Male , Middle Aged , Receptors, CCR7/genetics , Receptors, CCR7/immunology , Young Adult
10.
Hum Gene Ther ; 26(1): 1-13, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25333770

ABSTRACT

Following in vivo recombinant adeno-associated virus (rAAV)-based gene transfer, adaptive immune responses specific to the vector or the transgene product have emerged as a potential roadblock to successful clinical translation. The occurrence of such responses depends on several parameters, including the route of vector administration as well as the viral serotype and the genome configuration, either self-complementary (sc) or single-stranded (ss). These parameters influence rAAV vector-associated immunity by modulating the crosstalk between the vector and the host immune system, including vector ability to interact or even transduce lymphoid tissues in general and antigen-presenting cells (APCs) in particular. Little is known about immune cell populations that are targeted in vivo by rAAV vectors. Moreover, the transduction of dendritic cells is still controversial and not directly demonstrated. Here, we show that intramuscular administration of an sc rAAV8 vector in the mouse leads to a rapid distribution of viral genomes in the lymphoid tissues that is associated with transgene expression. Transduced cells were detected in follicular areas of the spleen and the draining lymph nodes. In addition to B and T lymphocytes, transduced professional APCs were detected although at very low frequency. In addition, viral genomes and transgene transcripts were also detected in these cell populations after ss rAAV8 vector administration. Although the functional significance of those observations needs further explorations, our results highlight an early and intricate interaction between the rAAV vector upon its in vivo delivery and the host immune system.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/metabolism , Dependovirus/genetics , Genetic Vectors/genetics , Genetic Vectors/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Transduction, Genetic , Animals , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Cell Line , Dependovirus/classification , Gene Dosage , Gene Expression , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Genome, Viral , Humans , Liver/metabolism , Male , Mice , RNA, Viral , Serogroup , Tissue Distribution , Transcription, Genetic , Transgenes
11.
PLoS One ; 9(9): e102538, 2014.
Article in English | MEDLINE | ID: mdl-25248159

ABSTRACT

Numerous studies have demonstrated the efficacy of the Adeno-Associated Virus (AAV)-based gene delivery platform in vivo. The control of transgene expression in many protocols is highly desirable for therapeutic applications and/or safety reasons. To date, the tetracycline and the rapamycin dependent regulatory systems have been the most widely evaluated. While the long-term regulation of the transgene has been obtained in rodent models, the translation of these studies to larger animals, especially to nonhuman primates (NHP), has often resulted in an immune response against the recombinant regulator protein involved in transgene expression regulation. These immune responses were dependent on the target tissue and vector delivery route. Here, using AAV vectors, we evaluated a doxycyclin-inducible system in rodents and macaques in which the TetR protein is fused to the human Krüppel associated box (KRAB) protein. We demonstrated long term gene regulation efficiency in rodents after subretinal and intramuscular administration of AAV5 and AAV1 vectors, respectively. However, as previously described for other chimeric transactivators, the TetR-KRAB-based system failed to achieve long term regulation in the macaque after intramuscular vector delivery because of the development of an immune response. Thus, immunity against the chimeric transactivator TetR-KRAB emerged as the primary limitation for the clinical translation of the system when targeting the skeletal muscle, as previously described for other regulatory proteins. New developments in the field of chimeric drug-sensitive transactivators with the potential to not trigger the host immune system are still needed.


Subject(s)
Dependovirus/genetics , Genetic Vectors/administration & dosage , Kruppel-Like Transcription Factors/metabolism , Muscle, Skeletal/metabolism , Retina/metabolism , Tetracycline/pharmacology , Animals , Dependovirus/classification , Dependovirus/immunology , Doxycycline , Gene Expression Regulation/drug effects , Gene Transfer Techniques , Genetic Vectors/drug effects , Humans , Immunity, Cellular , Kruppel-Like Transcription Factors/genetics , Macaca , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/immunology , Muscle, Skeletal/virology , Rats , Rats, Wistar , Retina/virology , Tetracycline/metabolism , Transgenes
12.
Mol Ther ; 22(11): 1923-35, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25200009

ABSTRACT

Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disorder caused by mutations in the dystrophin gene, without curative treatment yet available. Our study provides, for the first time, the overall safety profile and therapeutic dose of a recombinant adeno-associated virus vector, serotype 8 (rAAV8) carrying a modified U7snRNA sequence promoting exon skipping to restore a functional in-frame dystrophin transcript, and injected by locoregional transvenous perfusion of the forelimb. Eighteen Golden Retriever Muscular Dystrophy (GRMD) dogs were exposed to increasing doses of GMP-manufactured vector. Treatment was well tolerated in all, and no acute nor delayed adverse effect, including systemic and immune toxicity was detected. There was a dose relationship for the amount of exon skipping with up to 80% of myofibers expressing dystrophin at the highest dose. Similarly, histological, nuclear magnetic resonance pathological indices and strength improvement responded in a dose-dependent manner. The systematic comparison of effects using different independent methods, allowed to define a minimum threshold of dystrophin expressing fibers (>33% for structural measures and >40% for strength) under which there was no clear-cut therapeutic effect. Altogether, these results support the concept of a phase 1/2 trial of locoregional delivery into upper limbs of nonambulatory DMD patients.


Subject(s)
Dependovirus/genetics , Dystrophin/genetics , Forelimb/physiopathology , Muscular Dystrophy, Duchenne/therapy , RNA, Small Nuclear/genetics , Animals , Cohort Studies , Disease Models, Animal , Dogs , Dose-Response Relationship, Drug , Exons , Genetic Therapy , Genetic Vectors/administration & dosage , Humans , Infusions, Intravenous , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/physiopathology , RNA, Small Nuclear/metabolism
13.
Mol Ther Methods Clin Dev ; 1: 14028, 2014.
Article in English | MEDLINE | ID: mdl-26015970

ABSTRACT

Preventing untoward immune responses against a specific antigen is a major challenge in different clinical settings such as gene therapy, transplantation, or autoimmunity. Following intramuscular delivery of recombinant adeno-associated virus (rAAV)-derived vectors, transgene rejection can be a roadblock to successful clinical translation. Specific immunomodulation strategies potentially leading to sustained transgene expression while minimizing pharmacological immunosuppression are desirable. Tolerogenic dendritic cells (TolDC) are potential candidates but have not yet been evaluated in the context of gene therapy, to our knowledge. Following intramuscular delivery of rAAV-derived vectors expressing an immunogenic protein in the nonhuman primate model, we assessed the immunomodulating potential of autologous bone marrow-derived TolDC generated in the presence of IL10 and pulsed with the transgene product. TolDC administered either intradermally or intravenously were safe and well tolerated. While the intravenous route showed a modest ability to modulate host immunity against the transgene product, intradermally delivery resulted in a robust vaccination of the macaques when associated to intramuscular rAAV-derived vectors-based gene transfer. These findings demonstrate the critical role of TolDC mode of injection in modulating host immunity. This study also provides the first evidence of the potential of TolDC-based immunomodulation in gene therapy.

14.
Mol Ther ; 16(7): 1291-9, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18461055

ABSTRACT

We developed a drug-free regional intravenous (r.i.) delivery protocol of recombinant adeno-associated virus (rAAV) 1 and 8 to an entire limb in the nonhuman primate (NHP), and compared the results with those produced by intramuscular (i.m.) delivery of the same dose of vector. We show that r.i. delivery of both serotypes was remarkably well tolerated with no adverse side-effects. After i.m., muscle transduction was restricted to the site of injection with a high number of vector copies per cell for rAAV1. In contrast, although r.i. delivery resulted in a lower vector copy per cell, it was detectable in the vast majority of muscles of the injected limb. The amounts of circulating infectious rAAV were similar for both serotypes and modes of delivery. At autopsy at up to 34 months after vector administration, similar biodistribution patterns were found for both vectors and for both modes of delivery, with numerous organs found to be positive for vector sequence when assayed using PCR and Southern blot. Altogether, we demonstrated that r.i. is a simple and efficient transduction protocol in NHPs, resulting in higher expression of the transgene with a lower number of vector genomes per cell. However, regardless of the mode of delivery, concerns continue to be raised by the presence of vector sequences detected at distant sites.


Subject(s)
Dependovirus , Genetic Vectors/administration & dosage , Muscle, Skeletal , Transduction, Genetic/methods , Animals , DNA, Viral/blood , Gene Expression , Genetic Vectors/adverse effects , Genetic Vectors/pharmacokinetics , Injections, Intramuscular/adverse effects , Injections, Intravenous/adverse effects , Macaca fascicularis , Male , Transgenes
15.
J Virol ; 82(5): 2590-3, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18094174

ABSTRACT

The p5 promoter region of the adeno-associated virus type 2 (AAV-2) rep gene has been described as essential for Rep-mediated site-specific integration (RMSSI) of plasmid sequences in human chromosome 19. We report here that insertion of a full-length or minimal p5 element between the viral inverted terminal repeats does not significantly increase RMSSI of a recombinant AAV (rAAV) vector after infection of growth-arrested or proliferating human cells. This result suggests that the p5 element may not improve RMSSI of rAAV vectors in vivo.


Subject(s)
Dependovirus/genetics , Genetic Vectors , Recombination, Genetic , Virus Integration , Base Sequence , Chromosomes, Human, Pair 19 , DNA Primers , HeLa Cells , Humans , Plasmids , Repetitive Sequences, Nucleic Acid
16.
Mol Ther ; 16(7): 1291-1299, 2008 Jul.
Article in English | MEDLINE | ID: mdl-28178483

ABSTRACT

We developed a drug-free regional intravenous (RI) delivery protocol of recombinant adeno-associated virus (rAAV) 1 and 8 to an entire limb in the nonhuman primate (NHP), and compared the results with those produced by intramuscular (IM) delivery of the same dose of vector. We show that RI delivery of both serotypes was remarkably well tolerated with no adverse side-effects. After IM, muscle transduction was restricted to the site of injection with a high number of vector copies per cell for rAAV1. In contrast, although RI delivery resulted in a lower vector copy per cell, it was detectable in the vast majority of muscles of the injected limb. The amounts of circulating infectious rAAV were similar for both serotypes and modes of delivery. At autopsy at up to 34 months after vector administration, similar biodistribution patterns were found for both vectors and for both modes of delivery, with numerous organs found to be positive for vector sequence when assayed using PCR and Southern blot. Altogether, we demonstrated that RI is a simple and efficient transduction protocol in NHPs, resulting in higher expression of the transgene with a lower number of vector genomes per cell. However, regardless of the mode of delivery, concerns continue to be raised by the presence of vector sequences detected at distant sites.

17.
J Virol ; 79(17): 11082-94, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16103159

ABSTRACT

The p5 promoter region of adeno-associated virus type 2 (AAV-2) is a multifunctional element involved in rep gene expression, Rep-dependent replication, and site-specific integration. We initially characterized a 350-bp p5 region by its ability to behave like a cis-acting replication element in the presence of Rep proteins and adenoviral factors. The objective of this study was to define the minimal elements within the p5 region required for Rep-dependent replication. Assays performed in transfected cells (in vivo) indicated that the minimal p5 element was composed by a 55-bp sequence (nucleotides 250 to 304 of wild-type AAV-2) containing the TATA box, the Rep binding site, the terminal resolution site present at the transcription initiation site (trs(+1)), and a downstream 17-bp region that could potentially form a hairpin structure localizing the trs(+1) at the top of the loop. Interestingly, the TATA box was absolutely required for in vivo but dispensable for in vitro, i.e., cell-free, replication. We also demonstrated that Rep binding and nicking at the trs(+1) was enhanced in the presence of the cellular TATA binding protein, and that overexpression of this cellular factor increased in vivo replication of the minimal p5 element. Together, these studies identified the minimal replication origin present within the AAV-2 p5 promoter region and demonstrated for the first time the involvement of the TATA box, in cis, and of the TATA binding protein, in trans, for Rep-dependent replication of this viral element.


Subject(s)
DNA-Binding Proteins/metabolism , Dependovirus/genetics , Gene Expression Regulation, Viral , Promoter Regions, Genetic/genetics , TATA-Box Binding Protein/physiology , Viral Proteins/metabolism , Base Sequence , Binding Sites , Cell Line , Dependovirus/physiology , Humans , Nucleic Acid Conformation , TATA Box , Transcription Initiation Site , Virus Replication
18.
Virology ; 335(2): 252-63, 2005 May 10.
Article in English | MEDLINE | ID: mdl-15840524

ABSTRACT

The two large Rep proteins, Rep78 and Rep68, from the adeno-associated virus type 2 (AAV-2) are required for AAV-2 DNA replication, site-specific integration, and for the regulation of viral gene expression. The study of their activities is dependent on the ability to deliver these proteins to the cells in a time and dose-dependent manner. We evaluated the ability of a protein transduction domain (PTD) derived from the human immunodeficiency virus 1 (HIV-1) TAT protein to drive the cellular internalization of exogenously delivered PTD-fused Rep68 proteins. This analysis unexpectedly revealed that recombinant Rep68 alone, in the absence of any PTD, could be endocytosed by the cells. Rep68 as the chimeric TAT-Rep68 proteins were internalized through endocytosis in clathrin-coated vesicles and retained in late endosomes/lysosomes with no detectable nuclear localization. In the presence of adenovirus, the Rep proteins could translocate into the nucleus where they displayed a biological activity. These findings support recent reports on the mechanism of entry of TAT-fused proteins and also revealed a new property of Rep68.


Subject(s)
DNA-Binding Proteins/pharmacology , Dependovirus/chemistry , Recombinant Proteins/pharmacology , Viral Proteins/pharmacology , DNA-Binding Proteins/biosynthesis , DNA-Binding Proteins/genetics , DNA-Binding Proteins/isolation & purification , Dependovirus/genetics , Endocytosis , HeLa Cells , Heparin/pharmacology , Humans , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Solubility , Viral Proteins/biosynthesis , Viral Proteins/genetics , Viral Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL