Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 99(3)2023 02 28.
Article in English | MEDLINE | ID: mdl-36809778

ABSTRACT

A 50-kg scale, high solids anaerobic digester (AD) comprising six sequentially fed leach beds with a leachate recirculation system was operated at 37°C for 88 weeks. The solid feedstock contained a constant fibre fraction (a mix of cardboard, boxboard, newsprint, and fine paper) and varying proportions of food waste. Previously, we reported on the stable operation of this digestion system, where significantly enhanced methane production from the fibre fraction was observed as the proportion of food waste increased. The objective of this study was to identify relationships between process parameters and the microbial community. Increasing food waste led to a large increase in the absolute microbial abundance in the circulating leachate. While 16S rRNA amplicons for Clostridium butyricum were most abundant and correlated with the amount of FW in the system and with the overall methane yield, it was more cryptic Candidatus Roizmanbacteria and Spirochaetaceae that correlated specifically with enhanced methane from the fiber fraction. A faulty batch of bulking agent led to hydraulic channeling, which was reflected in the leachate microbial profiles matching that of the incoming food waste. The system performance and microbial community re-established rapidly after reverting to better bulking agent, illustrating the robustness of the system.


Subject(s)
Microbiota , Refuse Disposal , Anaerobiosis , Solid Waste , Food , RNA, Ribosomal, 16S/genetics , Bioreactors , Microbiota/genetics , Methane
2.
FEMS Microbiol Ecol ; 96(2)2020 02 01.
Article in English | MEDLINE | ID: mdl-31922542

ABSTRACT

Solid organic waste is a significant source of antibiotic resistance genes (ARGs) and effective treatment strategies are urgently required to limit the spread of antimicrobial resistance. Here, we studied ARG diversity and abundance as well as the relationship between antibiotic resistome and microbial community structure within a lab-scale solid-state anaerobic digester treating a mixture of food waste, paper and cardboard. A total of 10 samples from digester feed and digestion products were collected for microbial community analysis including small subunit rRNA gene sequencing, total community metagenome sequencing and high-throughput quantitative PCR. We observed a significant shift in microbial community composition and a reduction in ARG diversity and abundance after 6 weeks of digestion. ARGs were identified in all samples with multidrug resistance being the most abundant ARG type. Thirty-two per cent of ARGs detected in digester feed were located on plasmids indicating potential for horizontal gene transfer. Using metagenomic assembly and binning, we detected potential bacterial hosts of ARGs in digester feed, which included Erwinia, Bifidobacteriaceae, Lactococcus lactis and Lactobacillus. Our results indicate that the process of sequential solid-state anaerobic digestion of food waste, paper and cardboard tested herein provides a significant reduction in the relative abundance of ARGs per 16S rRNA gene.


Subject(s)
Drug Resistance, Microbial/genetics , Genes, Bacterial , Microbiota , Waste Products , Anaerobiosis , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Food , Food Microbiology , Gene Transfer, Horizontal , Metagenome , Microbiota/genetics , Plasmids , RNA, Ribosomal, 16S
3.
Environ Sci Technol ; 53(21): 12677-12687, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31593445

ABSTRACT

Full-scale anaerobic digestion processes for organic solid waste are common in Europe but are generally unaffordable in Canada and the United States because of inadequate regulations to restrict cheaper forms of disposal, particularly landfill. We investigated the viability of solid-state anaerobic digestion (SS-AD) as an alternative that reduces the costs of waste pretreatment and subsequent wastewater treatment. A laboratory SS-AD digester, comprising six 10 L leach beds and an upflow anaerobic sludge blanket reactor treating the leachate, was operated continuously for 88 weeks, with a mass balance based on chemical oxygen demand (COD) of 100 ± 2% (CODout/CODin). The feed was a mixture of fibers (cardboard, boxboard, newsprint, and fine paper) with varying amounts of food waste added. The process remained stable throughout. The addition of food waste caused a synergistic effect, raising methane production from the fiber mixture from a low of 52.7 L kg-1 COD fibersadded at no food waste, to 152 L kg-1 COD fibersadded at 29% food waste, an increase of 190%. Substrate COD destruction efficiency reached 65%, and the methane yield reached 225 L kg-1 CODadded at 29% food waste on a COD basis, with a solids retention time of 42 days. This performance was similar to that of a completely stirred tank reactor digesting similar wastes, but with much lower energy input. Multiple factors likely contributed to the enhanced fiber destruction, including the action of hydrolytic enzymes derived from fresh food waste and continuous leachate recirculation between leach beds of different ages.


Subject(s)
Bioreactors , Refuse Disposal , Anaerobiosis , Canada , Europe , Food , Food Additives , Methane , Sewage
SELECTION OF CITATIONS
SEARCH DETAIL
...