Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Nutrients ; 15(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37242191

ABSTRACT

Aging is a biological process with high susceptibility to several infections. This risk increases in older patients in residential care facilities (RCF). Thus, there is a clear demand for developing preventive interventions with new therapeutic compounds that combine efficacy and safety. This could be the case of compounds derived from plants of the genus Allium spp. The purpose of this study was to evaluate the impact of a combination of a garlic and onion extract concentrate standardized in organosulfur compounds derived from propiin on the incidence of respiratory tract infections in elderly patients of RCF. Sixty-five volunteers were selected at random to receive a placebo or a single daily dose of the extract for thirty-six weeks. Different clinical visits were performed to evaluate the main respiratory diseases with an infectious origin, as well as the associated symptoms and their duration. The extract showed a clinical safety profile and significantly reduced the incidence of respiratory infections. Moreover, the treatment decreased the number and duration of the associated symptoms compared with the placebo group. For the first time, we demonstrated the protective effect of Alliaceae extract in respiratory infectious diseases in elderly healthy volunteers, which could be used prophylactically against the most common infectious respiratory diseases.


Subject(s)
Communicable Diseases , Garlic , Respiratory Tract Infections , Humans , Aged , Onions , Antioxidants , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/prevention & control , Plant Extracts/therapeutic use , Plant Extracts/pharmacology , Volunteers
2.
Foods ; 12(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37048326

ABSTRACT

A comprehensive characterization of the phytochemicals present in a blackberry fruit extract by HPLC-TOF-MS has been carried out. The main compounds in the extract were ursane-type terpenoids which, along with phenolic compounds, may be responsible for the bioactivity of the extract. In vitro antioxidant capacity was assessed through Folin-Ciocalteu (31.05 ± 4.9 mg GAE/g d.w.), FRAP (637.8 ± 3.2 µmol Fe2+/g d.w.), DPPH (IC50 97.1 ± 2.4 µg d.w./mL) and TEAC (576.6 ± 8.3 µmol TE/g d.w.) assays. Furthermore, the extract exerted remarkable effects on in vitro cellular antioxidant activity in HUVEC cells at a concentration of 5 mg/mL. Antimicrobial activity of the extract was also tested. Most sensible microorganisms were Gram-positive bacteria, such as E. faecalis, B. cereus and Gram-negative E. coli (MBC of 12.5 mg/mL). IC50 values against colon tumoral cells HT-29 (4.9 ± 0.2 mg/mL), T-84 (5.9 ± 0.3 mg/mL) and SW-837 (5.9 ± 0.2 mg/mL) were also obtained. Furthermore, blackberry extract demonstrated anti-inflammatory activity inhibiting the secretion of pro-inflammatory IL-8 cytokines in two cellular models (HT-29 and T-84) in a concentration-dependent manner. These results support that blackberry fruits are an interesting source of bioactive compounds that may be useful in the prevention and treatment of different diseases, mainly related to oxidative stress.

3.
Foods ; 12(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37107483

ABSTRACT

Vaccinium myrtillus L. (bilberry) leaves are an important by-product of berry production that may be used as a source of phenolic compounds which have a positive effect on human health. Therefore, an ultrasound-assisted extraction via sonotrode has been used for the first time to recover bioactive compounds from bilberry leaves. The extraction has been optimized using a Box-Behnken design. The influence of ethanol:water ratio (v/v), time of extraction (min) and amplitude (%) were evaluated considering total phenolic content (TPC) and antioxidant capacity (DPPH and FRAP assays) as dependent variables in a response surface methodology (RSM). Optimum values for the independent factors were 30:70 ethanol/water (v/v), 5 min of extraction and 55% amplitude. The empirical values of the independent variables using the optimized conditions were 217.03 ± 4.92 mg GAE/g d.w. (TPC), 271.13 ± 5.84 mg TE/g d.w. (DPPH) and 312.21 ± 9.30 mg TE/g d.w. (FRAP). The validity of the experimental design was confirmed using ANOVA and the optimal extract was characterized using HPLC-MS. A total of 53 compounds were tentatively identified, of which 22 were found in bilberry leaves for the first time. Among them, chlorogenic acid was the most abundant molecule, representing 53% of the total phenolic compounds identified. Additionally, the antimicrobial and anticancer activities of the optimum extract were tested. Gram-positive bacteria demonstrated high sensitivity to bilberry leaves extract in vitro, with MBC values of 6.25 mg/mL for Listeria monocytogenes, Listeria innocua and Enterococcus faecalis, and 0.8 mg/mL for Staphylococcus aureus and Bacillus cereus. Furthermore, bilberry leaves extract exerted in vitro antiproliferative activity against HT-29, T-84 and SW-837 colon tumor cells with IC50 values of 213.2 ± 2.5, 1140.3 ± 5.2 and 936.5 ± 4.6 µg/mL, respectively. Thus, this rapid ultrasound-assisted extraction method has demonstrated to be an efficient technique to obtain bilberry leaves extract with in vitro antioxidant, antimicrobial and anticancer capacities that may be useful for the food industry as natural preservative or even for the production of functional foods or nutraceuticals.

4.
Nutrients ; 15(6)2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36986093

ABSTRACT

Increasing rates of cancer incidence and the side-effects of current chemotherapeutic treatments have led to the research on novel anticancer products based on dietary compounds. The use of Allium metabolites and extracts has been proposed to reduce the proliferation of tumor cells by several mechanisms. In this study, we have shown the in vitro anti-proliferative and anti-inflammatory effect of two onion-derived metabolites propyl propane thiosulfinate (PTS) and propyl propane thiosulfonate (PTSO) on several human tumor lines (MCF-7, T-84, A-549, HT-29, Panc-1, Jurkat, PC-3, SW-837, and T1-73). We observed that this effect was related to their ability to induce apoptosis regulated by oxidative stress. In addition, both compounds were also able to reduce the levels of some pro-inflammatory cytokines, such as IL-8, IL-6, and IL-17. Therefore, PTS and PTSO may have a promising role in cancer prevention and/or treatment.


Subject(s)
Allium , Humans , Propane , Diet , Onions , Anti-Inflammatory Agents/pharmacology
5.
Foods ; 12(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36832898

ABSTRACT

The present work is focused on the development of an analytical platform to elucidate the metabolic pathway of PTSO from onion, an organosulfur compound well-known for its functional and technological properties and its potential application in animal and human nutrition. This analytical platform consisted of the use of gas chromatography-mass spectrometry (GC-MS) and ultra-high performance liquid chromatography quadrupole with time-of-flight MS (UHPLC-Q-TOF-MS) in order to monitor volatile and non-volatile compounds derived from the PTSO. For the extraction of the compounds of interest, two different sample treatments were developed: liquid-liquid extraction (LLE) and salting-out assisted liquid-liquid extraction (SALLE) for GC-MS and UHPLC-Q-TOF-MS analysis, respectively. Once the analytical platform was optimised and validated, an in vivo study was planned to elucidate PTSO metabolisation, revealing the presence of dipropyl disulfide (DPDS) in liver samples with concentrations between 0.11 and 0.61 µg g-1. The DPDS maximum concentration in the liver was observed at 0.5 h after the intake. DPDS was also present in all plasma samples with concentrations between 2.1 and 2.4 µg mL-1. In regard to PTSO, it was only found in plasma at times above 5 h (0.18 µg mL-1). Both PTSO and DPDS were excreted via urine 24 h after ingestion.

6.
Microorganisms ; 10(10)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36296317

ABSTRACT

Among the alternatives to control avian coccidiosis, alliaceous extracts stand out due to their functional properties. Despite this, most of the references are focused just on garlic. In this study, we analyze the in vitro effects of propyl-propane thiosulfinate (PTS) and propyl-propane thiosulfonate (PTSO), two organosulfur compounds from onion, on MDBK cells infected with sporozoites of Eimeria acervulina. To this aim, two different experiments were performed. In the first experiment, sporozoites were previously incubated for 1 h at 1, 5 and 10 µg/mL of PTS or PTSO and added to MDBK cells. In the second experiment, MDBK cells were first incubated for 24 h at different concentrations of PTS or PTSO and then infected with E. acervulina sporozoites. Then, 24 h after inoculation, the presence of E. acervulina was quantified by qPCR. MDBK viability was measured at 72 h post-infection. Sporozoites incubated at 10 µg/mL of PTS and PTSO inhibited the capability to penetrate the cells up to 75.2% ± 6.44 and 71.7% ± 6.03, respectively. The incubation of MDBK with each compound resulted in a preventive effect against sporozoite invasion at 1 µg/mL of PTS and 1 and 10 µg/mL of PTSO. Cells incubated with PTSO obtained similar viability percentages to uninfected cells. These results suggest that the use of PTS and PTSO is a promising alternative to coccidiosis treatment, although further in vivo studies need to be performed.

7.
Foods ; 11(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36076806

ABSTRACT

Organosulfur compounds (OSCs) are secondary metabolites produced by different Allium species which present important biological activities such as antimicrobial, antioxidant, anti-inflammatory antidiabetic, anticarcinogenic, antispasmodic, etc. In recent years, their use has been promoted in the agri-food industry as a substitute for synthetic preservatives, increasing potential accumulative exposure to consumers. Before their application in the food industry, it is necessary to pass a safety assessment as specified by the European Food Safety Authority (EFSA). This work reviews the scientific literature on OSCs regarding their in vitro toxicity evaluation following PRISMA guidelines for systematic reviews. Four electronic research databases were searched (Web of Science, Scopus, Science Database and PubMed) and a total of 43 works were selected according to predeterminate inclusion and exclusion criteria. Different data items and the risk of bias for each study were included. Currently, there are very few in vitro studies focused on investigating the potential toxicity of OSCs. Most research studies aimed to evaluate the cytotoxicity of OSCs to elucidate their antiproliferative effects focusing on their therapeutic aspects using cancer cell lines as the main experimental model. The results showed that diallyl disulfide (DADS) is the compound most studied, followed by diallyl trisulfide (DATS), diallyl sulfide (DAS), Allicin and Ajoene. Only 4 studies have been performed specifically to explore the safety of OSCs for agri-food applications, and genotoxicity studies are limited. More toxicity studies of OSCs are necessary to ensure consumers safety and should mainly be focused on the evaluation of genotoxicity and long-term toxicity effects.

8.
Nutrients ; 14(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35276798

ABSTRACT

Allium species and their organosulfur-derived compounds could prevent obesity and metabolic dysfunction, as they exhibit immunomodulatory and antimicrobial properties. Here, we report the anti-obesogenic potential and dose-dependent effects (0.1 or 1 mg/kg/day) of propyl propane thiosulfinate (PTS) in a murine model of diet-induced obesity. The obesogenic diet increased body weight gain and adipocyte size, and boosted inflammatory marker (Cd11c) expression in the adipose tissue. Conversely, PTS prevented these effects in a dose-dependent manner. Moreover, the higher dose of PTS improved glucose and hepatic homeostasis, modulated lipid metabolism, and raised markers of the thermogenic capacity of brown adipose tissue. In the colon, the obesogenic diet reduced IL-22 levels and increased gut barrier function markers (Cldn3, Muc2, Reg3g, DefaA); however, the highest PTS dose normalized all of these markers to the levels of mice fed a standard diet. Gut microbiota analyses revealed no differences in diversity indexes and only minor taxonomic changes, such as an increase in butyrate producers, Intestimonas and Alistipes, and a decrease in Bifidobacterium in mice receiving the highest PTS dose. In summary, our study provides preclinical evidence for the protective effects of PTS against obesity, which if confirmed in humans, might provide a novel plant-based dietary product to counteract this condition.


Subject(s)
Allium , Animals , Diet, High-Fat , Disease Models, Animal , Mice , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/etiology , Obesity/metabolism , Propane/pharmacology
9.
Food Chem Toxicol ; 161: 112827, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35077829

ABSTRACT

The organosulfur compounds (OSC) extracted from Allium spp. exhibit antibacterial, antifungal, and antioxidant properties. The agri-food industry is taking advantage of these properties by using them as natural feed and food additives. In the present work, an acute and a subchronic 90-days toxicity studies have been conducted for the first time to assess the safety of the OSC propyl-propane-thiosulfinate (PTS). Both studies were carried out following the Organization for Economic Co-operation and Development test guidelines (425 and 408, respectively). The acute study provided a maximum tolerated dose (MTD) of 175 mg/kg and the subchronic study established the Non Observed Adverse Effect Level (NOAEL) ≥ 55 mg/kg body weight (b.w.)/day in both sexes. In addition, the subchronic study performed on rats exposed to 14, 28 and 55 mg/kg b.w./day PTS, revealed no changes in any of the hematological parameters measured as well as no differences in body weight and water/food consumption. However, biochemical parameters were altered in some groups, although they were not biologically significant (Ca2+ in female rats, and the thyroids hormones T3 and T4 in rat males). Furthermore, the histopathological assessment evidenced no abnormality on the gastrointestinal, respiratory, lymphoid, urinary, circulatory, nervous, musculoskeletal, and reproductive systems.


Subject(s)
Allium/chemistry , Plant Extracts/pharmacology , Thiosulfonic Acids/toxicity , Animals , Dose-Response Relationship, Drug , Female , Lethal Dose 50 , Male , Plant Extracts/chemistry , Rats , Toxicity Tests
10.
Food Chem Toxicol ; 157: 112619, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34656694

ABSTRACT

Propyl-propane-thiosulfonate (PTSO) and Propyl-propane-thiosulfinate (PTS) are organosulfur compounds used to supplement the diet of livestock because of their beneficial effects on feed palatability, their antibacterial, anti-inflammatory, and antimethanogenic activities. Besides, antibiotic residues in the environment can be reduced by using these natural bioactive compounds. The objective of this study was to optimize the extraction parameters for the analysis of PTSO and PTS in feed matrices by performing a solid-liquid extraction and quantification by Ultra performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Optimization was performed using the Response Surface Methodology on a Box-Behnken experimental design, optimizing the following parameters: solvent:sample ratios and evaporation temperature set for the rotary evaporator. The method was validated for 3 concentration levels for both PTSO (100, 500, 1000 ng g-1) and PTS (500, 1150, 2300 ng g-1). The highest recoveries of PTSO and PTS were obtained using 12.5 mL of 100% acetonitrile, stirring for 15 min, and an evaporation temperature of 20 °C. The validated method was further applied to detect and quantify these compounds in different feed matrices. In conclusion, this is the first study to simultaneously analyze PTSO and PTS at low concentrations, employing a sensitive technique such as UPLC-MS/MS.


Subject(s)
Animal Feed/analysis , Thiosulfonic Acids/analysis , Allium/chemistry , Chromatography, High Pressure Liquid , Limit of Detection , Tandem Mass Spectrometry
11.
J Fungi (Basel) ; 7(9)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34575774

ABSTRACT

Verticillium wilt, caused by Verticillium dahliae, is the most devastating soil-borne fungal disease of olive trees worldwide. Currently, there is no effective measure available to control the pathogen in diseased plants in open field conditions. Searching more effective and sustainable solutions are a priority for the olive sector. The existing alternatives for disease control include the use of biological control microorganisms and compounds of natural origin from plants, such as Alliaceae. Propyl propane thiosulfinate (PTS) and propyl propane thiosulfonate (PTSO) are two organosulfur compounds derived from Allium cepa with a widely documented antimicrobial activity. The aim of this study was to evaluate the antifungal activity of PTS and PTSO against the defoliating and non-defoliating V. dahliae pathotypes. Firstly, several in vitro tests were performed (Minimum Antifungal Concentration, susceptibility studies according to the Kirby-Bauer disk-diffusion method, antifungal activity through aerial diffusion and effect on mycelial growth). The ability of both compounds to sanitize soil was evaluated using a sterile substrate inoculated with V. dahliae. Finally, challenges in growth chambers were carried out. PTS and PTSO generated growth inhibition zones in agar diffusion and the gas phase, and the mycelial growth of all the V. dahliae strains was significantly altered. The V. dahliae population in soil was considerably reduced after the sanitization. Finally, in planta assays demonstrated the ability of these compounds to reduce disease related parameters and their contribution to control the phytopathogen. In conclusion, the results showed that the PTS and PTSO from Allium cepa display in vitro and in vivo antifungal activity against V. dahliae and suggested that both compounds could be used as natural and environmentally friendly tools for Verticillium wilt management.

12.
Nutrients ; 13(8)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34444755

ABSTRACT

BACKGROUND: Propyl propane thiosulfonate (PTSO) is an organosulfur compound from Allium spp. that has shown interesting antimicrobial properties and immunomodulatory effects in different experimental models. In this sense, our aim was to evaluate its effect on an experimental model of obesity, focusing on inflammatory and metabolic markers and the gut microbiota. METHODS AND RESULTS: Mice were fed a high-fat diet and orally treated with different doses of PTSO (0.1, 0.5 and 1 mg/kg/day) for 5 weeks. PTSO lessened the weight gain and improved the plasma markers associated with glucose and lipid metabolisms. PTSO also attenuated obesity-associated systemic inflammation, reducing the immune cell infiltration and, thus, the expression of pro-inflammatory cytokines in adipose and hepatic tissues (Il-1ẞ, Il-6, Tnf-α, Mcp-1, Jnk-1, Jnk-2, Leptin, Leptin R, Adiponectin, Ampk, Ppar-α, Ppar-γ, Glut-4 and Tlr-4) and improving the expression of different key elements for gut barrier integrity (Muc-2, Muc-3, Occludin, Zo-1 and Tff-3). Additionally, these effects were connected to a regulation of the gut microbiome, which was altered by the high-fat diet. CONCLUSION: Allium-derived PTSO can be considered a potential new tool for the treatment of metabolic syndrome.


Subject(s)
Allium/chemistry , Anti-Inflammatory Agents/pharmacology , Diet, High-Fat/adverse effects , Prebiotics , Sulfinic Acids/chemistry , Animals , Cytokines/metabolism , Disease Models, Animal , Gastrointestinal Microbiome/drug effects , Gene Expression , Inflammation/metabolism , Liver , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Propane , Weight Gain/drug effects
13.
Foods ; 10(8)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34441457

ABSTRACT

Dietary changes affect the composition and structure of gut microbiota (GM) in animals and humans. One of the beneficial effects of consuming products derived from plants is the positive influence on immunity and gastrointestinal health. Species belonging to the genus Allium contain many organosulfur compounds (OSCs) that have been widely studied showing their biological properties and beneficial effects on intestinal health and GM. This is the first systematic review of OSCs from Allium performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and it is based on the evidence that we found in literature about the benefits on the GM and intestinal health demonstrated by OSCs from Allium, and specifically from onion. OSCs from Allium cepa have shown a significant antibacterial activity against a broad spectrum of antibiotic-resistant Gram-positive and Gram-negative bacteria. In addition, the intake of OSCs from onion was able to modulate the composition of GM, increasing the beneficial bacterial populations in animal models. Moreover, the beneficial effects observed in murine models of colitis suggest that these compounds could be suitable candidates for the treatment of inflammatory bowel disease (IBD) or reverse the dysbiosis caused by a high-fat diet (HFD). Despite the evidence found both in vitro and in vivo, we have not found any article that tested OSCs different from allicin in clinical trials or dietary intervention studies in humans. In this sense, it would be interesting to conduct new research that tests the benefits of these compounds in human GM.

14.
Foods ; 10(7)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202152

ABSTRACT

Controlling Listeria in food is a major challenge, especially because it can persist for years in food processing plants. The best option to control this pathogen is the implementation of effective cleaning and disinfection procedures that guarantee the safety and quality of the final products. In addition, consumer trends are changing, being more aware of the importance of food safety and demanding natural foods, minimally processed and free of chemical additives. For this reason, the current consumption model is focusing on the development of preservatives of natural origin, from plants or microorganisms. In sum, this study aimed to evaluate the antimicrobial effectiveness of a citrus extract formulation rich in flavonoids against several L. monocytogenes and L. innocua strains, using in vitro test (agar diffusion test, minimum bactericidal concentration (MBC), and time-kill curves) and challenge test in food trials (carne mechada, salami, fresh salmon, lettuce, brine, and mozzarella cheese). The results presented in this work show that citrus extract, at doses of 5 and 10%, had a relevant antimicrobial activity in vitro against the target strains tested. Besides this, citrus extract applied on the surface of food had a significant antilisterial activity, mainly in carne mechada and mozzarella cheese, with reductions of up to eight logarithmic units with respect to the control. These results suggest that citrus extract can be considered a promising tool to improve the hygienic quality of ready-to-eat foods.

15.
Foods ; 10(5)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062736

ABSTRACT

Propyl-propanethiosulfinate (PTS) is a component of Allium essential oils. This organosulfur molecule can be used as a feed additive to decrease the appearance of bacterial resistances caused by the residues of antibiotics. In previous in vitro genotoxicity studies, contradictory results were reported for PTS. In this work, the in vivo genotoxicity of PTS in male and female rats was assessed for the first time, following OECD (Organisation for Economic Co-operation and Development) guidelines. After oral administration (doses: 5.5, 17.4, and 55.0 mg/kg PTS body weight), a combination of the micronucleus (MN) assay (OECD 474) in bone marrow and the standard and enzyme-modified comet assay (OECD 489) was performed. After necropsy, histopathological studies were also carried out. The results did not show the in vivo genotoxicity of PTS at any doses assayed, revealed by the absence of increased MN, and DNA strand breaks or oxidative DNA damage in the standard and enzyme-modified comet assays. The histopathological study revealed that only the highest dose tested (55.0 mg/kg) in the liver and all dose groups in the stomach presented minimal pathological lesions in the organs studied. Consequently, the present work confirms that PTS is not genotoxic at the doses assayed, and it is a promising natural alternative to synthetic preservatives and antibiotics in animal feed.

16.
Antibiotics (Basel) ; 10(3)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800152

ABSTRACT

Antimicrobial resistance (AMR) has risen as a global threat for human health. One of the leading factors for this emergence has been the massive use of antibiotics growth-promoter (AGPs) in livestock, enhancing the spread of AMR among human pathogenic bacteria. Thus, several alternatives such as probiotics, prebiotics, or phytobiotics have been proposed for using in animal feeding to maintain or improve productive levels while diminishing the negative effects of AGPs. Reducing the use of antibiotics is a key aspect in the pig rearing for production reasons, as well as for the production of high-quality pork, acceptable to consumers. Here we analyze the potential use of Allium extract as an alternative. In this study, weaned piglets were fed with Allium extract supplementation and compared with control and antibiotic (colistin and zinc oxide) treated piglets. The effects of Allium extract were tested by analyzing the gut microbiome and measuring different productive parameters. Alpha diversity indices decreased significantly in Allium extract group in caecum and colon. Regarding beta diversity, significant differences between treatments appeared only in caecum and colon. Allium extract and antibiotic piglets showed better values of body weight (BW), average daily weight gain (ADG), and feed conversion ratio (FCR) than control group. These results indicate that productive parameters can be implemented by modifying the gut microbiota through phytobiotics such as Allium extract, which will drive to drop the use of antibiotics in piglet diet.

17.
Food Chem Toxicol ; 144: 111612, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32738370

ABSTRACT

Propyl-propane-thiosulfonate (PTSO) is one of the main organosulfur compounds present in Allium essentials oil. Different applications in the food sector have been proposed for PTSO, such as food and feed additive and as active packaging. However, the authorization of its use depends on its toxicity profile. Thus, as a part of its safety assessment, in this work a repeated dose 90-day oral toxicity study has been conducted for the first time in rats following the OECD guideline 408. PTSO was administered to groups of 10 male and 10 female rats at dose levels of 0, 14, 28, and 55 mg/kg/day. No clinical signs or mortality and no changes in body weight, food consumption and feed conversion efficiency were detected through the study. Moreover, no treatment-related changes in hematological and biochemical parameters were observed, for either sex or dose groups. The histopathology study performed revealed no differences in organ weights, and no morphological and histopathological changes were observed. Based on these results, the no-observed-adverse-effect level (NOAEL) of PTSO was judged to be ≥ 55 mg/kg/day for both sexes.


Subject(s)
Toxicity Tests, Subchronic , Administration, Oral , Animals , Body Weight/drug effects , Clinical Chemistry Tests , Dose-Response Relationship, Drug , Drinking Behavior/drug effects , Feeding Behavior/drug effects , Female , Hematologic Tests , Male , No-Observed-Adverse-Effect Level , Organ Size/drug effects , Rats , Rats, Sprague-Dawley , Weight Gain/drug effects
18.
Mol Nutr Food Res ; 63(5): e1800653, 2019 03.
Article in English | MEDLINE | ID: mdl-30516875

ABSTRACT

SCOPE: Propyl-propane thiosulfonate (PTSO) is a component isolated from garlic (Allium sativum) with antioxidant, anti-inflammatory, immunomodulatory, and antimicrobial properties. In consequence, PTSO can be a potential candidate for the treatment of inflammatory bowel diseases. METHODS AND RESULTS: The anti-inflammatory effects of PTSO are studied in two mice models of colitis: 2,4-dinitrobenzene sulfonic acid (DNBS) (PTSO doses: 0.01-10 mg kg-1 ) and dextran sodium sulfate (DSS) (PTSO doses: 0.01-0.1 mg kg-1 ). The immunomodulatory effects of PTSO (0.1-25 µm) are also shown in vitro in Caco-2 and THP-1 cells, reducing the production of pro-inflammatory mediators and downregulating mitogen-activated protein kinases (MAPKs) signaling pathways. This compound displays beneficial effects in both models of mouse colitis by reducing the expression of different pro-inflammatory mediators and improving the intestinal epithelial barrier integrity. Moreover, PTSO ameliorates the altered gut microbiota composition observed in DSS colitic mice. CONCLUSION: PTSO exerts intestinal anti-inflammatory activity in experimental colitis in mice. This anti-inflammatory activity can be associated with the immunomodulatory properties of PTSO through the regulation of the activity of cells involved in the inflammatory response. Furthermore, PTSO is able to restore the intestinal epithelial barrier function and to ameliorate the intestinal microbiota homeostasis, thus supporting its future development in human IBD.


Subject(s)
Alkanesulfonates/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Colitis/drug therapy , Immunologic Factors/pharmacology , Thiosulfonic Acids/pharmacology , Animals , Caco-2 Cells , Colitis/chemically induced , Colitis/pathology , Dextran Sulfate , Dinitrofluorobenzene/analogs & derivatives , Disease Models, Animal , Garlic/chemistry , Gastrointestinal Microbiome/drug effects , Gene Expression Regulation/drug effects , Humans , Male , Mice, Inbred Strains
19.
Ars pharm ; 59(3): 185-196, jul.-sept. 2018. tab
Article in Spanish | IBECS | ID: ibc-177734

ABSTRACT

Objetivos: Revisión y discusión de las evidencias científicas sobre los efectos de los compuestos organosulfurados de vegetales del géneroAlliumcomo inmunomoduladores y potenciadores de la respuesta inmune. Métodos: Se realizó una revisión de estudios científicos originales y documentos de revisión. Resultados: Son numerosos los estudios científicos que evidencian la estrecha relación existente entre alimentación y salud, demostrando los beneficios que vitaminas, minerales, ácidos grasos poliinsaturados, probióticos, prebióticos o fitoquímicos ejercen sobre diversas patologías. Entre ellos, se destaca el papel de las sustancias de origen vegetal, como carotenoides, compuestos fenólicos, alcaloides, compuestos nitrogenados y organosulfurados, por su influencia positiva sobre la microbiota, salud intestinal y sistema inmune. En este trabajo se revisan y discuten las evidencias científicas sobre los beneficios de algunos compuestos organosulfurados de vegetales del géneroAllium, como alicina o propil propano tiosulfonato, por sus propiedades inmunomoduladoras y potenciadoras de la respuesta inmune. Conclusiones: Numerosos trabajos científicos ponen de manifiesto el efecto positivo de los compuestos organosulfurados de vegetales del géneroAlliumsobre el sistema inmune y los procesos inflamatorios. En particular de compuestos como la alicina, aunque su inestabilidad dificulta su aplicación real en suplementos nutracéuticos y otros compuestos, como los derivados de la propiína, resultan más prometedoras como ingredientes funcionales inmunopotenciadores


Objectives: Review and discussion of the scientific evidence on the effects of organosulfur compounds of Allium genus as immunomodulators and immunostimulators. Methods: A review of original scientific articles and reviews was conducted. Results: Numerous research and trials have shown the close relationship between food and health, pointing out the benefits that vitamins, minerals, polyunsaturated fatty acids, probiotics, prebiotics or phytochemicals exert on various diseases. Among them, the role of substances of vegetable origin, such as carotenoids, phenolic compounds, alkaloids, nitrogen and organosulfur compounds, should be remarked for their positive influence on the microbiota, intestinal health and immune system.In this work the scientific evidences about the benefits of some organosulfur compounds of Allium genus, such as allicin or propyl propane thiosulfonate, are reviewed and discussed for their immunomodulatory and immune-enhancing properties. Conclusions: Numerous scientific studies have shown the positive effects of organosulfur compounds of Allium genus on the immune system and inflammatory processes. In particular, of some compounds such as allicin, although its instability strongly affects its real application in nutraceutical supplements, and other compounds, such as propiin derivatives, are more promising as immunostimulators ingredients


Subject(s)
Humans , Allium/immunology , Immune System , Immunologic Factors/chemical synthesis , Dose-Response Relationship, Immunologic , Immunomodulation , Plants/immunology , Heterocyclic Compounds/pharmacology , Garlic , 25938
20.
Article in English | MEDLINE | ID: mdl-29279039

ABSTRACT

Cooked ham is more prone to spoilage than other meat products, making preservation a key step in its commercialisation. One of the most promising preservation strategies is the use of active packaging. Oregano essential oil (OEO) and Proallium® (an Allium extract) have previously been shown to be useful in polylactic acid (PLA)-active films for ready-to-eat salads. The present work aims to study the suitability of polypropylene (PP) films containing OEO and Proallium® in the preservation of cooked ham. Concerning the technological features of the studied material, no significant changes in the mechanical or optical properties of PP films containing the active substances were recorded in comparison to the PP film without extracts. However, films containing both active substances were more flexible than the control film and less strong, highlighting the plasticisation effect of the natural extracts. Moreover, physical properties changed when active substances were added to the film. Incorporation of 4% Proallium® affected the transparency of the film to a higher extent compared to 8% OEO, undergoing decreases in transparency of 40% and 45%, respectively. Moreover, only the film containing the highest amount of OEO (8%) significantly decreased the thickness. Both active substances showed antibacterial properties; however, Proallium®-active films seemed to be more effective against Brochothrix thermosphacta than PP films containing OEO, with all percentages of Proallium® killing the bacterial population present in the ham after 60 days. In addition, materials containing the lowest Proallium® content exhibited higher acceptability by consumers in the sensory analyses with 63-100% willing to purchase, better even than the control package (56-89%). In fact, 2% of Proallium® obtained the best results in the odour study performed by the panellists.


Subject(s)
Allium/chemistry , Anti-Bacterial Agents/pharmacology , Food Packaging/methods , Meat Products/microbiology , Oils, Volatile/pharmacology , Polypropylenes/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Brochothrix/drug effects , Microbial Sensitivity Tests , Oils, Volatile/chemistry , Polypropylenes/chemistry , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...