Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Cycle ; 22(5): 542-564, 2023 03.
Article in English | MEDLINE | ID: mdl-36123968

ABSTRACT

Self-sustained quiescence (SSQ) has been characterized as a stable but reversible non-proliferative cellular state that limits the cloning of cultured cancer cells. By developing refined clonogenic assays, we showed here that cancer cells in SSQ can be selected with anticancer agents and that culture at low cell density induced SSQ in pancreas and prostate adenocarcinoma cells. Pre-culture of cells in 3D or their pretreatment with pharmacological inhibitors of mechanistic target of rapamycin (mTOR) synergize with low cell density for induction of SSQ in a Beclin-1-dependent manner. Dissociated pancreatic adenocarcinoma (PAAD) cells rendered defective for SSQ by down-regulating Beclin-1 expression exhibit higher tumor growth rate when injected subcutaneously into mice. Conversely, dissociated PAAD cells in SSQ promote the formation of small indolent tumors that eventually transitioned to a rapid growth phase. Ex vivo clonogenic assays showed that up to 40% of clonogenic cancer cells enzymatically dissociated from resected fast-growing tumors could enter SSQ, suggesting that SSQ could significantly impact the proliferation of cancer cells that are naturally dispersed from tumors. Remarkably, the kinetics of clinical metastatic recurrence in 124 patients with pancreatic adenocarcinoma included in the TGCA-PAAD project could be predicted from Beclin-1 and Cyclin-A2 mRNA levels in their primary tumor, Cyclin A2 mRNA being a marker of both cell proliferation and mTOR complex 1 activity. Overall, our data show that SSQ is likely to promote the late development of clinical metastases and suggest that identifying new agents targeting cancer cells in SSQ could help improve patient survival.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Male , Animals , Mice , Adenocarcinoma/pathology , Beclin-1/genetics , Pancreatic Neoplasms/pathology , TOR Serine-Threonine Kinases/metabolism , Sirolimus , Cell Proliferation , RNA, Messenger , Cell Line, Tumor , Pancreatic Neoplasms
2.
Cell Mol Gastroenterol Hepatol ; 4(2): 263-282, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28752115

ABSTRACT

BACKGROUND & AIMS: Transforming growth factor beta (TGFß) acts either as a tumor suppressor or as an oncogene, depending on the cellular context and time of activation. TGFß activates the canonical SMAD pathway through its interaction with the serine/threonine kinase type I and II heterotetrameric receptors. Previous studies investigating TGFß-mediated signaling in the pancreas relied either on loss-of-function approaches or on ligand overexpression, and its effects on acinar cells have so far remained elusive. METHODS: We developed a transgenic mouse model allowing tamoxifen-inducible and Cre-mediated conditional activation of a constitutively active type I TGFß receptor (TßRICA) in the pancreatic acinar compartment. RESULTS: We observed that TßRICA expression induced acinar-to-ductal metaplasia (ADM) reprogramming, eventually facilitating the onset of KRASG12D-induced pre-cancerous pancreatic intraepithelial neoplasia. This phenotype was characterized by the cellular activation of apoptosis and dedifferentiation, two hallmarks of ADM, whereas at the molecular level, we evidenced a modulation in the expression of transcription factors such as Hnf1ß, Sox9, and Hes1. CONCLUSIONS: We demonstrate that TGFß pathway activation plays a crucial role in pancreatic tumor initiation through its capacity to induce ADM, providing a favorable environment for KRASG12D-dependent carcinogenesis. Such findings are highly relevant for the development of early detection markers and of potentially novel treatments for pancreatic cancer patients.

3.
Ann N Y Acad Sci ; 1014: 121-31, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15153426

ABSTRACT

Somatostatin is a neuropeptide family that is produced by neuroendocrine, inflammatory, and immune cells in response to different stimuli. Somatostatin acts as an endogenous inhibitory regulator of various cellular functions including secretions, motility, and proliferation. Its action is mediated by a family of G-protein-coupled receptors (called sst1-sst5) that are widely distributed in the brain and periphery. The five receptors bind the natural peptides with high affinity, but only sst2, sst5, and sst3 bind the short synthetic analogs used to treat acromegaly and neuroendocrine tumors. This review covers the current knowledge in somatostatin receptor biology and signaling.


Subject(s)
Neuroendocrine Tumors/physiopathology , Receptors, Somatostatin/physiology , Signal Transduction/physiology , Humans
4.
Proc Natl Acad Sci U S A ; 100(1): 155-60, 2003 Jan 07.
Article in English | MEDLINE | ID: mdl-12490654

ABSTRACT

Somatostatin receptor subtype 2 (sst2) gene expression is lost in 90% of human pancreatic adenocarcinomas. We previously demonstrated that stable sst2 transfection of human pancreatic BxPC-3 cells, which do not endogenously express sst2, inhibits cell proliferation, tumorigenicity, and metastasis. These sst2 effects occur as a consequence of an autocrine sst2-dependent loop, whereby sst2 induces expression of its own ligand, somatostatin. Here we investigated whether sst2 induces apoptosis in sst2-transfected BxPC-3 cells. Expression of sst2 induced a 4.4- +/- 0.05-fold stimulation of apoptosis in BxPC-3 through the activation of tyrosine phosphatase SHP-1. sst2 also sensitized these cells to apoptosis induced by tumor necrosis factor alpha (TNFalpha), enhancing it 4.1- +/- 1.5-fold. Apoptosis in BxPC-3 cells mediated by TNF-related apoptosis-inducing ligand (TRAIL) and CD95L was likewise increased 2.3- +/- 0.5-fold and 7.4- +/- 2.5-fold, respectively. sst2-dependent activation and cell sensitization to death ligand-induced apoptosis involved activation of the executioner caspases, key factors in both death ligand- or mitochondria-mediated apoptosis. sst2 affected both pathways: first, by up-regulating expression of TRAIL and TNFalpha receptors, DR4 and TNFRI, respectively, and sensitizing the cells to death ligand-induced initiator capase-8 activation, and, second, by down-regulating expression of the antiapoptotic mitochondrial Bcl-2 protein. These results are of interest for the clinical management of chemoresistant pancreatic adenocarcinoma by using a combined gene therapy based on the cotransfer of genes for both the sst2 and a nontoxic death ligand.


Subject(s)
Apoptosis/physiology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/physiopathology , Receptors, Somatostatin/physiology , Tumor Necrosis Factor-alpha/pharmacology , Apoptosis Regulatory Proteins , Base Sequence , DNA Primers , Enzyme Activation , Enzyme Inhibitors/pharmacology , Fas Ligand Protein , Humans , Intracellular Signaling Peptides and Proteins , Kinetics , Membrane Glycoproteins/physiology , Polymerase Chain Reaction , Protein Tyrosine Phosphatase, Non-Receptor Type 6 , Protein Tyrosine Phosphatases/antagonists & inhibitors , Protein Tyrosine Phosphatases/metabolism , RNA, Messenger/genetics , RNA, Ribosomal, 18S/genetics , Recombinant Proteins/metabolism , TNF-Related Apoptosis-Inducing Ligand , Transfection , Tumor Cells, Cultured , Tumor Necrosis Factor-alpha/physiology
SELECTION OF CITATIONS
SEARCH DETAIL