Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters











Publication year range
1.
Neurobiol Dis ; 180: 106086, 2023 05.
Article in English | MEDLINE | ID: mdl-36933673

ABSTRACT

The role of alpha-synuclein in Parkinson's disease has been heavily investigated since its discovery as a component of Lewy bodies. Recent rodent data demonstrate that alpha-synuclein strain structure is critical for differential propagation and toxicity. Based on these findings, we have compared, for the first time, in this pilot study, the capacity of two alpha-synuclein strains and patient-derived Lewy body extracts to model synucleinopathies after intra-putaminal injection in the non-human primate brain. Functional alterations triggered by these injections were evaluated in vivo using glucose positron emission tomography imaging. Post-mortem immunohistochemical and biochemical analyses were used to detect neuropathological alterations in the dopaminergic system and alpha-synuclein pathology propagation. In vivo results revealed a decrease in glucose metabolism more pronounced in alpha-synuclein strain-injected animals. Histology showed a decreased number of dopaminergic tyrosine hydroxylase-positive cells in the substantia nigra to different extents according to the inoculum used. Biochemistry revealed that alpha-synuclein-induced aggregation, phosphorylation, and propagation in different brain regions are strain-specific. Our findings show that distinct alpha-synuclein strains can induce specific patterns of synucleinopathy in the non-human primate, changes in the nigrostriatal pathway, and functional alterations that resemble early-stage Parkinson's disease.


Subject(s)
Parkinson Disease , Synucleinopathies , Animals , alpha-Synuclein/metabolism , Parkinson Disease/metabolism , Pilot Projects , Lewy Bodies/metabolism , Synucleinopathies/pathology , Substantia Nigra/metabolism , Dopamine/metabolism , Primates/metabolism
2.
Brain ; 146(1): 149-166, 2023 01 05.
Article in English | MEDLINE | ID: mdl-35298632

ABSTRACT

Huntington's disease is a fatal neurodegenerative disease characterized by striatal neurodegeneration, aggregation of mutant Huntingtin and the presence of reactive astrocytes. Astrocytes are important partners for neurons and engage in a specific reactive response in Huntington's disease that involves morphological, molecular and functional changes. How reactive astrocytes contribute to Huntington's disease is still an open question, especially because their reactive state is poorly reproduced in experimental mouse models. Here, we show that the JAK2-STAT3 pathway, a central cascade controlling astrocyte reactive response, is activated in the putamen of Huntington's disease patients. Selective activation of this cascade in astrocytes through viral gene transfer reduces the number and size of mutant Huntingtin aggregates in neurons and improves neuronal defects in two complementary mouse models of Huntington's disease. It also reduces striatal atrophy and increases glutamate levels, two central clinical outcomes measured by non-invasive magnetic resonance imaging. Moreover, astrocyte-specific transcriptomic analysis shows that activation of the JAK2-STAT3 pathway in astrocytes coordinates a transcriptional program that increases their intrinsic proteolytic capacity, through the lysosomal and ubiquitin-proteasome degradation systems. This pathway also enhances their production and exosomal release of the co-chaperone DNAJB1, which contributes to mutant Huntingtin clearance in neurons. Together, our results show that the JAK2-STAT3 pathway controls a beneficial proteostasis response in reactive astrocytes in Huntington's disease, which involves bi-directional signalling with neurons to reduce mutant Huntingtin aggregation, eventually improving disease outcomes.


Subject(s)
Huntington Disease , Neurodegenerative Diseases , Animals , Mice , Huntington Disease/genetics , Astrocytes/metabolism , Proteostasis , Neurodegenerative Diseases/pathology , Neurons/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism
3.
Acta Neuropathol Commun ; 9(1): 165, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34641980

ABSTRACT

Amyloid-ß (Aß) pathology transmission has been described in patients following iatrogenic exposure to compounds contaminated with Aß proteins. It can induce cerebral Aß angiopathy resulting in brain hemorrhages and devastating clinical impacts. Iatrogenic transmission of tau pathology is also suspected but not experimentally proven. In both scenarios, lesions were detected several decades after the putatively triggering medico-surgical act. There is however little information regarding the cognitive repercussions in individuals who do not develop cerebral hemorrhages. In the current study, we inoculated the posterior cingulate cortex and underlying corpus callosum of young adult primates (Microcebus murinus) with either Alzheimer's disease or control brain extracts. This led to widespread Aß and tau pathologies in all of the Alzheimer-inoculated animals following a 21-month-long incubation period (n = 12) whereas none of the control brain extract-inoculated animals developed such lesions (n = 6). Aß deposition affected almost all cortical regions. Tau pathology was also detected in Aß-deposit-free regions distant from the inoculation sites (e.g. in the entorhinal cortex), while some regions adjacent, but not connected, to the inoculation sites were spared (e.g. the occipital cortex). Alzheimer-inoculated animals developed cognitive deficits and cerebral atrophy compared to controls. These pathologies were induced using two different batches of Alzheimer brain extracts. This is the first experimental demonstration that tau can be transmitted by human brain extracts inoculations in a primate. We also showed for the first time that the transmission of widespread Aß and tau pathologies can be associated with cognitive decline. Our results thus reinforce the need to organize a systematic monitoring of individuals who underwent procedures associated with a risk of Aß and tau iatrogenic transmission. They also provide support for Alzheimer brain-inoculated primates as relevant models of Alzheimer pathology.


Subject(s)
Amyloid beta-Peptides/toxicity , Brain/metabolism , Brain/pathology , Cognitive Dysfunction , tau Proteins/toxicity , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Cheirogaleidae , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Humans , Iatrogenic Disease
4.
Int J Mol Sci ; 22(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201785

ABSTRACT

Alpha-synuclein (α-syn) and leucine-rich repeat kinase 2 (LRRK2) play crucial roles in Parkinson's disease (PD). They may functionally interact to induce the degeneration of dopaminergic (DA) neurons via mechanisms that are not yet fully understood. We previously showed that the C-terminal portion of LRRK2 (ΔLRRK2) with the G2019S mutation (ΔLRRK2G2019S) was sufficient to induce neurodegeneration of DA neurons in vivo, suggesting that mutated LRRK2 induces neurotoxicity through mechanisms that are (i) independent of the N-terminal domains and (ii) "cell-autonomous". Here, we explored whether ΔLRRK2G2019S could modify α-syn toxicity through these two mechanisms. We used a co-transduction approach in rats with AAV vectors encoding ΔLRRK2G2019S or its "dead" kinase form, ΔLRRK2DK, and human α-syn with the A53T mutation (AAV-α-synA53T). Behavioral and histological evaluations were performed at 6- and 15-weeks post-injection. Results showed that neither form of ΔLRRK2 alone induced the degeneration of neurons at these post-injection time points. By contrast, injection of AAV-α-synA53T alone resulted in motor signs and degeneration of DA neurons. Co-injection of AAV-α-synA53T with AAV-ΔLRRK2G2019S induced DA neuron degeneration that was significantly higher than that induced by AAV-α-synA53T alone or with AAV-ΔLRRK2DK. Thus, mutated α-syn neurotoxicity can be enhanced by the C-terminal domain of LRRK2G2019 alone, through cell-autonomous mechanisms.


Subject(s)
Disease Models, Animal , Dopaminergic Neurons/pathology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Mutant Proteins/metabolism , Mutation , alpha-Synuclein/metabolism , Animals , Dopaminergic Neurons/metabolism , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mutant Proteins/genetics , Protein Domains , Rats , alpha-Synuclein/genetics
5.
EJNMMI Res ; 11(1): 36, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33826008

ABSTRACT

BACKGROUND: Positron Emission Tomography (PET) imaging of the Synaptic Vesicle glycoprotein (SV) 2A is a new tool to quantify synaptic density. [18F]UCB-H was one of the first promising SV2A-ligands to be labelled and used in vivo in rodent and human, while limited information on its pharmacokinetic properties is available in the non-human primate. Here, we evaluate the reliability of the three most commonly used modelling approaches for [18F]UCB-H in the non-human cynomolgus primate, adding the coupled fit of the non-displaceable distribution volume (VND) as an alternative approach to improve unstable fit. The results are discussed in the light of the current state of SV2A PET ligands. RESULTS: [18F]UCB-H pharmacokinetic data was optimally fitted with a two-compartment model (2TCM), although the model did not always converge (large total volume of distribution (VT) or large uncertainty of the estimate). 2TCM with coupled fit K1/k2 across brain regions stabilized the quantification, and confirmed a lower specific signal of [18F]UCB-H compared to the newest SV2A-ligands. However, the measures of VND and the influx parameter (K1) are similar to what has been reported for other SV2A ligands. These data were reinforced by displacement studies using [19F]UCB-H, demonstrating only 50% displacement of the total [18F]UCB-H signal at maximal occupancy of SV2A. As previously demonstrated in clinical studies, the graphical method of Logan provided a more robust estimate of VT with only a small bias compared to 2TCM. CONCLUSIONS: Modeling issues with a 2TCM due to a slow component have previously been reported for other SV2A ligands with low specific binding, or after blocking of specific binding. As all SV2A ligands share chemical structural similarities, we hypothesize that this slow binding component is common for all SV2A ligands, but only hampers quantification when specific binding is low.

6.
Brain ; 144(4): 1167-1182, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33842937

ABSTRACT

Deposits of different abnormal forms of tau in neurons and astrocytes represent key anatomo-pathological features of tauopathies. Although tau protein is highly enriched in neurons and poorly expressed by astrocytes, the origin of astrocytic tau is still elusive. Here, we used innovative gene transfer tools to model tauopathies in adult mouse brains and to investigate the origin of astrocytic tau. We showed in our adeno-associated virus (AAV)-based models and in Thy-Tau22 transgenic mice that astrocytic tau pathology can emerge secondarily to neuronal pathology. By designing an in vivo reporter system, we further demonstrated bidirectional exchanges of tau species between neurons and astrocytes. We then determined the consequences of tau accumulation in astrocytes on their survival in models displaying various status of tau aggregation. Using stereological counting of astrocytes, we report that, as for neurons, soluble tau species are highly toxic to some subpopulations of astrocytes in the hippocampus, whereas the accumulation of tau aggregates does not affect their survival. Thus, astrocytes are not mere bystanders of neuronal pathology. Our results strongly suggest that tau pathology in astrocytes may significantly contribute to clinical symptoms.


Subject(s)
Astrocytes/pathology , Hippocampus/pathology , Tauopathies/pathology , tau Proteins/toxicity , Animals , Humans , Male , Mice , Neurons/pathology , Protein Aggregates , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Isoforms/toxicity , Tauopathies/metabolism , tau Proteins/genetics , tau Proteins/metabolism
7.
Acta Neuropathol Commun ; 8(1): 205, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33250056

ABSTRACT

In humans, iatrogenic transmission of cerebral amyloid-ß (Aß)-amyloidosis is suspected following inoculation of pituitary-derived hormones or dural grafts presumably contaminated with Aß proteins as well as after cerebral surgeries. Experimentally, intracerebral inoculation of brain homogenate extracts containing misfolded Aß can seed Aß deposition in transgenic mouse models of amyloidosis or in non-human primates. The transmission of cerebral Aß is governed by the host and by the inoculated samples. It is critical to better characterize the propensities of different hosts to develop Aß deposition after contamination by an Aß-positive sample as well as to better assess which biological samples can transmit this lesion. Aß precursor protein (huAPPwt) mice express humanized non-mutated forms of Aß precursor protein and do not spontaneously develop Aß or amyloid deposits. We found that inoculation of Aß-positive brain extracts from Alzheimer patients in these mice leads to a sparse Aß deposition close to the alveus 18 months post-inoculation. However, it does not induce cortical or hippocampal Aß deposition. Secondary inoculation of apparently amyloid deposit-free hippocampal extracts from these huAPPwt mice to APPswe/PS1dE9 mouse models of amyloidosis enhanced Aß deposition in the alveus 9 months post-inoculation. This suggests that Aß seeds issued from human brain samples can persist in furtive forms in brain tissues while maintaining their ability to foster Aß deposition in receptive hosts that overexpress endogenous Aß. This work emphasizes the need for high-level preventive measures, especially in the context of neurosurgery, to prevent the risk of iatrogenic transmission of Aß lesions from samples with sparse amyloid markers.


Subject(s)
Amyloid beta-Peptides/metabolism , Amyloidosis/metabolism , Brain/metabolism , Plaque, Amyloid/metabolism , Tissue Extracts , Alzheimer Disease , Amyloid beta-Peptides/administration & dosage , Amyloid beta-Protein Precursor/genetics , Amyloidosis/pathology , Animals , Brain/pathology , Disease Models, Animal , Hippocampus , Humans , Iatrogenic Disease , Immunohistochemistry , Mice , Mice, Transgenic , Plaque, Amyloid/pathology , Presenilin-1/genetics
8.
PLoS One ; 15(10): e0240228, 2020.
Article in English | MEDLINE | ID: mdl-33017429

ABSTRACT

INTRODUCTION: Knowledge of the repeatability of quantitative parameters derived from [18F]FDG PET images is essential to define the group size and allow correct interpretation. Here we tested repeatability and accuracy of different [18F]FDG absolute and relative quantification parameters in a standardized preclinical setup in nonhuman primates (NHP). MATERIAL AND METHODS: Repeated brain [18F]FDG scans were performed in 6 healthy NHP under controlled experimental factors likely to account for variability. Regional cerebral metabolic rate of glucose (CMRglu) was calculated using a Patlak plot with blood input function Semi-quantitative approaches measuring standard uptake values (SUV, SUV×glycemia and SUVR (SUV Ratio) using the pons or cerebellum as a reference region) were considered. Test-retest variability of all quantification parameters were compared in different brain regions in terms of absolute variability and intra-and-inter-subject variabilities. In an independent [18F]FDG PET experiment, robustness of these parameters was evaluated in 4 naive NHP. RESULTS: Experimental conditions (injected dose, body weight, animal temperature) were the same at both imaging sessions (p >0.4). No significant difference in the [18F]FDG quantification parameters was found between test and retest sessions. Absolute variability of CMRglu, SUV, SUV×glycemia and normalized SUV ranged from 25 to 43%, 16 to 21%, 23 to 28%, and 7 to 14%, respectively. Intra-subject variability largely explained the absolute variability of all quantitative parameters. They were all significantly correlated to each other and they were all robust. Arterial and venous glycemia were highly correlated (r = 0.9691; p<0.0001). CONCLUSION: [18F]FDG test-retest studies in NHP protocols need to be conducted under well-standardized experimental conditions to assess and select the most reliable and reproducible quantification approach. Furthermore, the choice of the quantification parameter has to account for the transversal or follow-up study design. If pons and cerebellum regions are not affected, non-invasive SUVR is the most favorable approach for both designs.


Subject(s)
Brain/diagnostic imaging , Positron-Emission Tomography , Animals , Brain/metabolism , Fluorodeoxyglucose F18 , Glucose/metabolism , Macaca fascicularis , Male , Radiopharmaceuticals , Reproducibility of Results
9.
Neurobiol Aging ; 90: 135-146, 2020 06.
Article in English | MEDLINE | ID: mdl-32171592

ABSTRACT

In Alzheimer disease (AD), astrocytes undergo complex changes and become reactive. The consequences of this reaction are still unclear. To evaluate the net impact of reactive astrocytes in AD, we developed viral vectors targeting astrocytes that either activate or inhibit the Janus kinase-signal transducer and activator of transcription 3 (JAK2-STAT3) pathway, a central cascade controlling astrocyte reaction. We aimed to evaluate whether reactive astrocytes contribute to tau as well as amyloid pathologies in the hippocampus of 3xTg-AD mice, an AD model that develops tau hyper-phosphorylation and amyloid deposition. JAK2-STAT3 pathway-mediated modulation of reactive astrocytes in 25% of the hippocampus of 3xTg-AD mice did not significantly influence tau phosphorylation or amyloid processing and deposition at early, advanced, and terminal disease stage. Interestingly, inhibition of the JAK2-STAT3 pathway in hippocampal astrocytes did not improve spatial memory in the Y maze but it did reduce anxiety in the elevated plus maze. Our unique approach to specifically manipulate reactive astrocytes in situ show they may impact behavioral outcomes without influencing tau or amyloid pathology.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Astrocytes/metabolism , Alzheimer Disease/pathology , Amyloidogenic Proteins/metabolism , Animals , Astrocytes/pathology , Disease Models, Animal , Hippocampus/cytology , Hippocampus/metabolism , Hippocampus/pathology , Janus Kinase 2/metabolism , Mice, Transgenic , Phosphorylation , STAT3 Transcription Factor/metabolism , Signal Transduction/genetics , tau Proteins/metabolism
10.
Neurobiol Dis ; 134: 104614, 2020 02.
Article in English | MEDLINE | ID: mdl-31605779

ABSTRACT

The G2019S substitution in the kinase domain of LRRK2 (LRRK2G2019S) is the most prevalent mutation associated with Parkinson's disease (PD). Neurotoxic effects of LRRK2G2019S are thought to result from an increase in its kinase activity as compared to wild type LRRK2. However, it is unclear whether the kinase domain of LRRK2G2019S is sufficient to trigger degeneration or if the full length protein is required. To address this question, we generated constructs corresponding to the C-terminal domain of LRRK2 (ΔLRRK2). A kinase activity that was increased by G2019➔S substitution could be detected in ΔLRRK2. However biochemical experiments suggested it did not bind or phosphorylate the substrate RAB10, in contrast to full length LRRK2. The overexpression of ΔLRRK2G2019S in the rat striatum using lentiviral vectors (LVs) offered a straightforward and simple way to investigate its effects in neurons in vivo. Results from a RT-qPCR array analysis indicated that ΔLRRK2G2019S led to significant mRNA expression changes consistent with a kinase-dependent mechanism. We next asked whether ΔLRRK2 could be sufficient to trigger neurodegeneration in the substantia nigra pars compacta (SNc) in adult rats. Six months after infection of the substantia nigra pars compacta (SNc) with LV-ΔLRRK2WT or LV-ΔLRRK2G2019S, the number of DA neurons was unchanged. To examine whether higher levels of ΔLRRK2G2019S could trigger degeneration we cloned ΔLRRK2 in AAV2/9 construct. As expected, AAV2/9 injected in the SNc led to neuronal expression of ΔLRRK2WT and ΔLRRK2G2019S at much higher levels than those obtained with LVs. Six months after injection, unbiased stereology showed that AAV-ΔLRRK2G2019S produced a significant ~30% loss of neurons positive for tyrosine hydroxylase- and for the vesicular dopamine transporter whereas AAV-ΔLRRK2WT did not. These findings show that overexpression of the C-terminal part of LRRK2 containing the mutant kinase domain is sufficient to trigger degeneration of DA neurons, through cell-autonomous mechanisms, possibly independent of RAB10.


Subject(s)
Dopaminergic Neurons/pathology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Nerve Degeneration/genetics , Parkinson Disease , Protein Domains/genetics , Animals , Gene Transfer Techniques , Genetic Vectors , HEK293 Cells , Humans , Lentivirus , Male , Mutation , Nerve Degeneration/pathology , Pars Compacta , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL