Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 616(7957): 461-464, 2023 04.
Article in English | MEDLINE | ID: mdl-36858076

ABSTRACT

On 26 September 2022, the Double Asteroid Redirection Test (DART) spacecraft struck Dimorphos, a satellite of the asteroid 65803 Didymos1. Because it is a binary system, it is possible to determine how much the orbit of the satellite changed, as part of a test of what is necessary to deflect an asteroid that might threaten Earth with an impact. In nominal cases, pre-impact predictions of the orbital period reduction ranged from roughly 8.8 to 17 min (refs. 2,3). Here we report optical observations of Dimorphos before, during and after the impact, from a network of citizen scientists' telescopes across the world. We find a maximum brightening of 2.29 ± 0.14 mag on impact. Didymos fades back to its pre-impact brightness over the course of 23.7 ± 0.7 days. We estimate lower limits on the mass contained in the ejecta, which was 0.3-0.5% Dimorphos's mass depending on the dust size. We also observe a reddening of the ejecta on impact.

2.
ACS Biomater Sci Eng ; 9(2): 1020-1029, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36720461

ABSTRACT

We present the design, fabrication, and characterization of an implantable neural interface based on anisotropic magnetoresistive (AMR) magnetic-field sensors that combine reduced size and high performance at body temperature. The sensors are based on La0.67Sr0.33MnO3 (LSMO) as a ferromagnetic material, whose epitaxial growth has been suitably engineered to get uniaxial anisotropy and large AMR output together with low noise even at low frequencies. The performance of LSMO sensors of different film thickness and at different temperatures close to 37 °C has to be explored to find an optimum sensitivity of ∼400%/T (with typical detectivity values of 2 nT·Hz-1/2 at a frequency of 1 Hz and 0.3 nT·Hz-1/2 at 1 kHz), fitted for the detection of low magnetic signals coming from neural activity. Biocompatibility tests of devices consisting of submillimeter-size LSMO sensors coated by a thin poly(dimethyl siloxane) polymeric layer, both in vitro and in vivo, support their high suitability as implantable detectors of low-frequency biological magnetic signals emerging from heterogeneous electrically active tissues.


Subject(s)
Magnetic Fields , Prostheses and Implants , Anisotropy , Polymers
3.
Phys Rev Lett ; 124(24): 246804, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32639817

ABSTRACT

Persistent photoconductance is a phenomenon found in many semiconductors, by which light induces long-lived excitations in electronic states. Commonly, persistent photoexcitation leads to an increase of carriers (accumulation), though occasionally it can be negative (depletion). Here, we present the quantum well at the LaAlO_{3}/SrTiO_{3} interface, where in addition to photoinduced accumulation, a secondary photoexcitation enables carrier depletion. The balance between both processes is wavelength dependent, and allows tunable accumulation or depletion in an asymmetric manner, depending on the relative arrival time of photons of different frequencies. We use Green's function formalism to describe this unconventional photoexcitation, which paves the way to an optical implementation of neurobiologically inspired spike-timing-dependent plasticity.

SELECTION OF CITATIONS
SEARCH DETAIL
...