Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS One ; 8(2): e55506, 2013.
Article in English | MEDLINE | ID: mdl-23393587

ABSTRACT

Aquaporins (AQPs) are membrane channels belonging to the major intrinsic proteins family and are known for their ability to facilitate water movement. While in Populus trichocarpa, AQP proteins form a large family encompassing fifty-five genes, most of the experimental work focused on a few genes or subfamilies. The current work was undertaken to develop a comprehensive picture of the whole AQP gene family in Populus species by delineating gene expression domain and distinguishing responsiveness to developmental and environmental cues. Since duplication events amplified the poplar AQP family, we addressed the question of expression redundancy between gene duplicates. On these purposes, we carried a meta-analysis of all publicly available Affymetrix experiments. Our in-silico strategy controlled for previously identified biases in cross-species transcriptomics, a necessary step for any comparative transcriptomics based on multispecies design chips. Three poplar AQPs were not supported by any expression data, even in a large collection of situations (abiotic and biotic constraints, temporal oscillations and mutants). The expression of 11 AQPs was never or poorly regulated whatever the wideness of their expression domain and their expression level. Our work highlighted that PtTIP1;4 was the most responsive gene of the AQP family. A high functional divergence between gene duplicates was detected across species and in response to tested cues, except for the root-expressed PtTIP2;3/PtTIP2;4 pair exhibiting 80% convergent responses. Our meta-analysis assessed key features of aquaporin expression which had remained hidden in single experiments, such as expression wideness, response specificity and genotype and environment interactions. By consolidating expression profiles using independent experimental series, we showed that the large expansion of AQP family in poplar was accompanied with a strong divergence of gene expression, even if some cases of functional redundancy could be suspected.


Subject(s)
Aquaporins/metabolism , Populus/metabolism , Aquaporins/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Genes, Duplicate/genetics , Genes, Duplicate/physiology , Populus/genetics
2.
Tree Physiol ; 30(1): 89-102, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19955192

ABSTRACT

Bud break pattern is a key determinant of tree architecture. The mechanisms leading to the precedence of certain buds over the others are not yet fully explained, but the availability of soluble sugars may play a significant role, especially those in the xylem sap at the onset of the growing period. Here, we measured carbon availability in the different tissues (bud, xylem and bark). To assess the capacity of buds to use the xylem sap carbohydrates, the fluxes between xylem vessels and parenchyma cells, bark and buds of walnut (Juglans regia cv 'Franquette') were measured during the rest period until bud break. This uptake capacity varies according to the temperature, the sugar and the position on the branch of the fragment studied. Between December and March, in xylem tissues, the active component of sucrose uptake was predominant compared with diffusion (90% of the total uptake), whereas the active component accounted for more moderate amounts in buds (50% of the uptake). The active uptake of hexoses took place belatedly (April) in xylem. The flow rates between xylem vessels and buds increased 1 month before bud break and reached 2000 microg sucrose h(-)(1) g DW(-)(1). Fluxes seemed to depend on bud position on the branch. However, this study strongly suggests that they were mainly dependent on the sink strength of the buds and on the sink competition between bud, xylem parenchyma and bark.


Subject(s)
Carbohydrate Metabolism , Flowers/metabolism , Juglans/metabolism , Plant Stems/metabolism , Xylem/metabolism , Biological Transport , Glucose/metabolism , Hexoses/metabolism , Kinetics , Seasons , Sucrose/metabolism
3.
Tree Physiol ; 28(2): 215-24, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18055432

ABSTRACT

In temperate woody species, the vegetative growth period is characterized by active physiological events (e.g., bud break), which require an adequate supply of soluble sugars imported in the xylem sap stream. One-year-old shoots of walnut (Juglans regia L. cv. 'Franquette') trees, which have an acrotonic branching pattern (only apical and distal vegetative buds burst), were used to study the regulation of xylem sugar transporters in relation to bud break. At the end of April (beginning of bud break), a higher xylem sap sucrose concentration and a higher active sucrose uptake by xylem parenchyma cells were found in the apical portion (bearing buds able to burst) than in the basal portion (bearing buds unable to burst) of the sample shoots. At the same time, xylem parenchyma cells of the apical portion of the shoots exhibited greater amounts of both transcripts and proteins of JrSUT1 (Juglans regia putative sucrose transporter 1) than those of the basal stem segment. Conversely, no pronounced difference was found for putative hexose transporters JrHT1 and JrHT2 (Juglans regia hexose transporters 1 and 2). These findings demonstrate the high capacity of bursting vegetative buds to import sucrose. Immunological analysis revealed that sucrose transporters were localized in all parenchyma cells of the xylem, including vessel-associated cells, which are highly specialized in nutrient exchange. Taken together, our results indicate that xylem parenchyma sucrose transporters make a greater contribution than hexose transporters to the imported carbon supply of bursting vegetative buds.


Subject(s)
Hexoses/metabolism , Juglans/cytology , Juglans/growth & development , Membrane Transport Proteins/metabolism , Plant Proteins/metabolism , Sucrose/metabolism , Xylem/cytology , Biological Transport , Flowers/cytology , Flowers/metabolism , Gene Expression Regulation, Plant , Immunoblotting , Juglans/genetics , Membrane Transport Proteins/genetics , Phylogeny , Plant Proteins/genetics , Plant Stems/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seasons , Sequence Homology, Amino Acid , Solubility , Starch/metabolism , Xylem/growth & development
4.
Tree Physiol ; 27(10): 1471-80, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17669737

ABSTRACT

Plasma membrane H+-ATPase (PM H+-ATPase) plays a key role in nutrient transport, stress responses and growth. To evaluate proton motive force differences between apical and basal parts of acrotonic 1-year-old shoots of walnut (Juglans regia L. cv 'Franquette') trees, spatial and seasonal changes in PM H+-ATPase were studied in mature xylem tissues. During both the dormancy and growth resumption periods, and in both the apical and basal parts of the stem, PM H+-ATPase activity showed positive correlations with the amount of immunodetectable protein. In spring, at the time of growth resumption, higher activities and immunoreactivities of PM H+-ATPase were found in the apical part of the stem than in the basal part of the stem. In spring, the decrease in xylem sugar concentration reflected the high sugar uptake rate. Our data suggest that PM H+-ATPase plays a major role in the uptake of carbohydrates from xylem vessels during growth resumption. These results are discussed in the context of the acrotonic tendency of walnut shoots.


Subject(s)
Cell Membrane/enzymology , Juglans/enzymology , Plant Stems/enzymology , Proton-Translocating ATPases/metabolism , Xylem/enzymology , Carbohydrates , Cloning, Molecular , DNA, Complementary , DNA, Plant , Gene Expression Regulation, Plant , Juglans/genetics , Microscopy, Fluorescence , Protein Transport , Proton-Translocating ATPases/genetics , RNA, Messenger/metabolism , RNA, Plant , Seasons , Xylem/cytology
5.
Plant Physiol ; 143(1): 122-33, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17114274

ABSTRACT

Molecular and physiological studies in walnut (Juglans regia) are combined to establish the putative role of leaf plasma membrane aquaporins in the response of leaf hydraulic conductance (K(leaf)) to irradiance. The effects of light and temperature on K(leaf) are described. Under dark conditions, K(leaf) was low, but increased by 400% upon exposure to light. In contrast to dark conditions, K(leaf) values of light-exposed leaves responded to temperature and 0.1 mm cycloheximide treatments. Furthermore, K(leaf) was not related to stomatal aperture. Data of real-time reverse transcription-polymerase chain reaction showed that K(leaf) dynamics were tightly correlated with the transcript abundance of two walnut aquaporins (JrPIP2,1 and JrPIP2,2). Low K(leaf) in the dark was associated with down-regulation, whereas high K(leaf) in the light was associated with up-regulation of JrPIP2. Light responses of K(leaf) and aquaporin transcripts were reversible and inhibited by cycloheximide, indicating the importance of de novo protein biosynthesis in this process. Our results indicate that walnut leaves can rapidly change their hydraulic conductance and suggest that these changes can be explained by regulation of plasma membrane aquaporins. Model simulation suggests that variable leaf hydraulic conductance in walnut might enhance leaf gas exchanges while buffering leaf water status in response to ambient light fluctuations.


Subject(s)
Aquaporins/physiology , Juglans/physiology , Light , Plant Proteins/physiology , Water/metabolism , Aquaporins/genetics , Aquaporins/metabolism , Cycloheximide/pharmacology , Gene Expression Regulation, Plant , Juglans/drug effects , Juglans/radiation effects , Plant Leaves/drug effects , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Transpiration , RNA, Messenger/metabolism , Temperature
6.
Tree Physiol ; 24(7): 785-93, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15123450

ABSTRACT

We studied the effect of temperature on the carbohydrate status of parenchyma cells during winter in relation to the efflux and influx of sugars between parenchyma cells and xylem vessels in 1-year-old twigs of walnut (Juglans regia L.). The mechanism of sugar transfer between contact cells and vessels was also investigated. We obtained new insights into the possible osmotic role of sugars, particularly sucrose, in stem pressure formation and winter embolism repair. Accumulation of sucrose in the xylem sap during winter was mainly influenced by: (1) abundant conversion of starch to sucrose in the symplast at low temperatures; (2) sucrose efflux into the apoplast at low temperatures (1 degrees C); and (3) inefficient sugar uptake at low temperatures, although efficient sugar uptake occurred at 15 degrees C. We hypothesize that a diethyl pyrocarbonate (DEPC)-sensitive protein mediates facilitated diffusion of sucrose from parenchyma cells to xylem vessels (efflux) in walnut. We discuss the possible occurrence of active H+-sucrose symports and the coexistence of both influx and efflux processes in walnut in winter and the modulation of the relative importance of these flows by temperature.


Subject(s)
Juglans/physiology , Trees/physiology , Carbohydrates/physiology , Models, Biological , Osmolar Concentration , Plant Stems/physiology , Seasons , Temperature
7.
Tree Physiol ; 24(5): 579-88, 2004 May.
Article in English | MEDLINE | ID: mdl-14996662

ABSTRACT

Vegetative buds of peach (Prunus persica L. Batsch.) trees act as strong sinks and their bud break capacity can be profoundly affected by carbohydrate availability during the rest period (November-February). Analysis of xylem sap revealed seasonal changes in concentrations of sorbitol and hexoses (glucose and fructose). Sorbitol concentrations decreased and hexose concentrations increased with increasing bud break capacity. Sucrose concentration in xylem sap increased significantly but remained low. To clarify their respective roles in the early events of bud break, carbohydrate concentrations and uptake rates, and activities of NAD-dependent sorbitol dehydrogenase (SDH), sorbitol oxidase (SOX) and cell wall invertase (CWI) were determined in meristematic tissues, cushion tissues and stem segments. Only CWI activity increased in meristematic tissues shortly before bud break. In buds displaying high bud break capacity (during January and February), concentrations of sorbitol and sucrose in meristematic tissues were almost unchanged, paralleling their low rates of uptake and utilization by meristematic tissues, and indicating that sorbitol and sucrose play a negligible role in the bud break process. Hexose concentrations in meristematic tissues and glucose imported by meristematic tissues correlated positively with bud break capacity, suggesting that hexoses are involved in the early events of bud break. These findings were confirmed by data for buds that were unable to break because they had been collected from trees deprived of cold. We therefore conclude that hexoses are of greater importance than sorbitol or sucrose in the early events of bud break in peach trees.


Subject(s)
Hexoses/physiology , Plant Growth Regulators/physiology , Prunus/physiology , Trees/physiology , Carbohydrates/analysis , Plant Stems/chemistry , Plant Stems/growth & development , Plant Stems/physiology , Sorbitol/analysis , Sucrose/analysis
8.
J Exp Bot ; 55(398): 879-88, 2004 Apr.
Article in English | MEDLINE | ID: mdl-14990620

ABSTRACT

In peach trees (Prunus persica L. Batsch cv. Redhaven), sorbitol is a primary photosynthetic product and may play an important role in the budbreak process. Surprisingly, before budbreak (from January to early March), the concentration of sorbitol in the xylem sap decreases, while that of hexoses (glucose and fructose) increases. The aim of this work was to study the control of sorbitol uptake into vegetative buds by hexoses. Sorbitol uptake was selectively inhibited by hexoses at low and physiological concentrations and this effect was both reversible and concentration-dependent. In addition, the active uptake of sorbitol significantly declined in the plasma membrane vesicles-enriched fraction purified from glucose-treated vegetative buds, suggesting that the inhibitory action of glucose was at the membrane level. Finally, among several glucose analogues tested, only hexokinase substrates (2-deoxyglucose and mannose) were able to mimic the glucose effect, which was completely blocked by the hexokinase inhibitor mannoheptulose. These results represent the first steps towards a better understanding of polyol transport control in plants.


Subject(s)
Flowering Tops/metabolism , Glucose/metabolism , Hexokinase/metabolism , Prunus/metabolism , Sorbitol/metabolism , Biological Transport , Carbon Radioisotopes , Cell Membrane/metabolism , Fructose/metabolism , Photosynthesis , Radioisotope Dilution Technique , Seasons
9.
Tree Physiol ; 24(1): 99-105, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14652219

ABSTRACT

We studied seasonal variation in xylem sap pH of Juglans regia L. Our main objectives were to (1) test the effect of temperature on seasonal changes in xylem sap pH and (2) study the involvement of plasma membrane H+-ATPase of vessel-associated cells in the control of sap pH. For this purpose, orchard-grown trees were compared with trees grown in a heated (> or = 15 degrees C) greenhouse. During autumn, sap pH was not directly influenced by temperature. A seasonal change in H+-ATPase activity resulting from seasonal variation in the amount of protein was measured in orchard-grown trees, whereas no significant seasonal changes were recorded in greenhouse-grown trees. Our data suggest that H+-ATPase does not regulate xylem sap pH directly by donating protons to the xylem, but by facilitating secondary active H+/sugar transport, among other mechanisms.


Subject(s)
Juglans/physiology , Proton-Translocating ATPases/physiology , Trees/physiology , Hydrogen-Ion Concentration , Juglans/enzymology , Seasons , Trees/enzymology
10.
Plant Physiol ; 133(2): 630-41, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14526109

ABSTRACT

In perennial plants, freeze-thaw cycles during the winter months can induce the formation of air bubbles in xylem vessels, leading to changes in their hydraulic conductivity. Refilling of embolized xylem vessels requires an osmotic force that is created by the accumulation of soluble sugars in the vessels. Low water potential leads to water movement from the parenchyma cells into the xylem vessels. The water flux gives rise to a positive pressure essential for the recovery of xylem hydraulic conductivity. We investigated the possible role of plasma membrane aquaporins in winter embolism recovery in walnut (Juglans regia). First, we established that xylem parenchyma starch is converted to sucrose in the winter months. Then, from a xylem-derived cDNA library, we isolated two PIP2 aquaporin genes (JrPIP2,1 and JrPIP2,2) that encode nearly identical proteins. The water channel activity of the JrPIP2,1 protein was demonstrated by its expression in Xenopus laevis oocytes. The expression of the two PIP2 isoforms was investigated throughout the autumn-winter period. In the winter period, high levels of PIP2 mRNA and corresponding protein occurred simultaneously with the rise in sucrose. Furthermore, immunolocalization studies in the winter period show that PIP2 aquaporins were mainly localized in vessel-associated cells, which play a major role in controlling solute flux between parenchyma cells and xylem vessels. Taken together, our data suggest that PIP2 aquaporins could play a role in water transport between xylem parenchyma cells and embolized vessels.


Subject(s)
Aquaporins/physiology , Cell Membrane/physiology , Intracellular Signaling Peptides and Proteins , Juglans/physiology , Amino Acid Sequence , Carbohydrates/analysis , Carrier Proteins/chemistry , Carrier Proteins/physiology , Molecular Sequence Data , Plant Diseases , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/physiology , Seasons , Sequence Alignment , Sequence Homology, Amino Acid , Transcription Factors/chemistry , Transcription Factors/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...