Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Nature ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778114

ABSTRACT

For many adult human organs, tissue regeneration during chronic disease remains a controversial subject. Regenerative processes are easily observed in animal models, and their underlying mechanisms are becoming well characterized1-4, but technical challenges and ethical aspects are limiting the validation of these results in humans. We decided to address this difficulty with respect to the liver. This organ displays the remarkable ability to regenerate after acute injury, although liver regeneration in the context of recurring injury remains to be fully demonstrated. Here we performed single-nucleus RNA sequencing (snRNA-seq) on 47 liver biopsies from patients with different stages of metabolic dysfunction-associated steatotic liver disease to establish a cellular map of the liver during disease progression. We then combined these single-cell-level data with advanced 3D imaging to reveal profound changes in the liver architecture. Hepatocytes lose their zonation and considerable reorganization of the biliary tree takes place. More importantly, our study uncovers transdifferentiation events that occur between hepatocytes and cholangiocytes without the presence of adult stem cells or developmental progenitor activation. Detailed analyses and functional validations using cholangiocyte organoids confirm the importance of the PI3K-AKT-mTOR pathway in this process, thereby connecting this acquisition of plasticity to insulin signalling. Together, our data indicate that chronic injury creates an environment that induces cellular plasticity in human organs, and understanding the underlying mechanisms of this process could open new therapeutic avenues in the management of chronic diseases.

2.
Article in English | MEDLINE | ID: mdl-38697358

ABSTRACT

Alcohol-associated hepatitis (AH) is an acute-on-chronic liver injury that occurs in patients with chronic alcohol-associated liver disease (ALD). Patients with severe AH have high short-term mortality and lack effective pharmacologic therapies. Inflammation is believed to be one of the key factors promoting AH progression and has been actively investigated as therapeutic targets over the last several decades, but no effective inflammatory targets have been identified so far. In this review, we discuss how inflammatory cells and the inflammatory mediators produced by these cells contribute to the development and progression of AH, with focus on neutrophils and macrophages. The crosstalk between inflammatory cells and liver nonparenchymal cells in the pathogenesis of AH is elaborated. We also deliberate the application of recent cutting-edge technologies in characterizing liver inflammation in AH. Finally, the potential therapeutic targets of inflammatory mediators for AH are briefly summarized.

3.
J Hepatol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38763358

ABSTRACT

The hepatic sinusoids are composed of liver sinusoidal endothelial cells (LSEC), which are surrounded by hepatic stellate cells (HSC) and contain liver-resident macrophages called Kupffer cells, and other patrolling immune cells. All these cells communicate with each other and with hepatocytes to maintain sinusoidal homeostasis and a spectrum of hepatic functions under healthy conditions. Sinusoidal homeostasis is disrupted by metabolites, toxins, viruses, and other pathological factors, leading to liver injury, chronic liver diseases, and liver cirrhosis. Alterations in hepatic sinusoids are linked to fibrosis progression and portal hypertension. LSECs are crucial regulators of cellular crosstalk within their microenvironment via angiocrine signaling. This review discusses the mechanisms by which angiocrine signaling orchestrates sinusoidal homeostasis, as well as the development of liver diseases. Here, we summarize the crosstalk between LSECs, HSCs, hepatocytes, cholangiocytes, and immune cells in health and disease and comment on potential novel therapeutic methods for treating liver diseases.

4.
Hepatology ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231043

ABSTRACT

BACKGROUND AND AIMS: Acute liver failure (ALF) is a rare but life-threatening condition, and DILI, particularly acetaminophen toxicity, is the leading cause of ALF. Innate immune mechanisms further perpetuate liver injury, while the role of the adaptive immune system in DILI-related ALF is unclear. APPROACH AND RESULTS: We analyzed liver tissue from 2 independent patient cohorts with ALF and identified hepatic T cell infiltration as a prominent feature in human ALF. CD8 + T cells were characterized by zonation toward necrotic regions and an activated gene expression signature. In murine acetaminophen-induced liver injury, intravital microscopy revealed zonation of CD8 + but not CD4 + T cells at necrotic areas. Gene expression analysis exposed upregulated C-C chemokine receptor 7 (CCR7) and its ligand CCL21 in the liver as well as a broadly activated phenotype of hepatic CD8 + T cells. In 2 mouse models of ALF, Ccr7-/- mice had significantly aggravated early-phase liver damage. Functionally, CCR7 was not involved in the recruitment of CD8 + T cells, but regulated their activation profile potentially through egress to lymphatics. Ccr7-/- CD8 + T cells were characterized by elevated expression of activation, effector, and exhaustion profiles. Adoptive transfer revealed preferential homing of CCR7-deficient CD8 + T cells to the liver, and depletion of CD8 + T cells attenuated liver damage in mice. CONCLUSIONS: Our study demonstrates the involvement of the adaptive immune system in ALF in humans and mice. We identify the CCR7-CCL21 axis as an important regulatory pathway, providing downstream protection against T cell-mediated liver injury.

5.
Clin J Gastroenterol ; 17(2): 300-306, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38133737

ABSTRACT

Simultaneous occurrence of benign hepatic lesions of different types is a sporadic phenomenon. To the best of our knowledge, we report the first clinical case of a syndrome with simultaneous manifestations of three different entities of benign liver tumors (hepatocellular adenoma, focal nodular hyperplasia and hemangioma) with a novel mutation detected in the liver adenoma and in the presence of a number of further extrahepatic organ neoplasms. Furthermore, we describe for the first time the presence of liver epithelial cells of hepatocytic phenotype expressing cytokeratin 7 (CK7) at the border of the adenoma. These findings may be important for explaining pathogenesis of benign as well as malignant tumors based on genetic and histopathological features.


Subject(s)
Adenoma , Focal Nodular Hyperplasia , Hemangioma , Liver Neoplasms , Humans , Liver/pathology , Liver Neoplasms/pathology , Focal Nodular Hyperplasia/complications , Focal Nodular Hyperplasia/diagnosis , Focal Nodular Hyperplasia/pathology , Adenoma/pathology , Hemangioma/complications , Hemangioma/pathology
6.
Science ; 381(6662): eabq5202, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37676943

ABSTRACT

Kupffer cells (KCs) are localized in liver sinusoids but extend pseudopods to parenchymal cells to maintain their identity and serve as the body's central bacterial filter. Liver cirrhosis drastically alters vascular architecture, but how KCs adapt is unclear. We used a mouse model of liver fibrosis and human tissue to examine immune adaptation. Fibrosis forced KCs to lose contact with parenchymal cells, down-regulating "KC identity," which rendered them incapable of clearing bacteria. Commensals stimulated the recruitment of monocytes through CD44 to a spatially distinct vascular compartment. There, recruited monocytes formed large aggregates of multinucleated cells (syncytia) that expressed phenotypical KC markers and displayed enhanced bacterial capture ability. Syncytia formed via CD36 and were observed in human cirrhosis as a possible antimicrobial defense that evolved with fibrosis.


Subject(s)
Blood-Borne Infections , Giant Cells , Kupffer Cells , Liver Cirrhosis , Animals , Humans , Mice , Giant Cells/immunology , Giant Cells/microbiology , Kupffer Cells/immunology , Kupffer Cells/microbiology , Liver Cirrhosis/immunology , Liver Cirrhosis/microbiology , Liver Cirrhosis/pathology , Blood-Borne Infections/immunology , Disease Models, Animal
8.
Front Immunol ; 14: 1192840, 2023.
Article in English | MEDLINE | ID: mdl-37261338

ABSTRACT

The biliary epithelial cells, also known as cholangiocytes, line the intra- and extrahepatic bile ducts, forming a barrier between intra- and extra-ductal environments. Cholangiocytes are mostly known to modulate bile composition and transportation. In hepatobiliary diseases, bile duct injury leads to drastic alterations in cholangiocyte phenotypes and their release of soluble mediators, which can vary depending on the original insult and cellular states (quiescence, senescence, or proliferation). The cholangiocyte-secreted cytokines (also termed cholangiokines) drive ductular cell proliferation, portal inflammation and fibrosis, and carcinogenesis. Hence, despite the previous consensus that cholangiocytes are bystanders in liver diseases, their diverse secretome plays critical roles in modulating the intrahepatic microenvironment. This review summarizes recent insights into the cholangiokines under both physiological and pathological conditions, especially as they occur during liver injury-regeneration, inflammation, fibrosis and malignant transformation processes.


Subject(s)
Bile Ducts , Liver , Humans , Bile Ducts/pathology , Liver/pathology , Epithelial Cells/pathology , Fibrosis , Inflammation/pathology
9.
J Clin Invest ; 133(15)2023 08 01.
Article in English | MEDLINE | ID: mdl-37338984

ABSTRACT

The liver can fully regenerate after partial resection, and its underlying mechanisms have been extensively studied. The liver can also rapidly regenerate after injury, with most studies focusing on hepatocyte proliferation; however, how hepatic necrotic lesions during acute or chronic liver diseases are eliminated and repaired remains obscure. Here, we demonstrate that monocyte-derived macrophages (MoMFs) were rapidly recruited to and encapsulated necrotic areas during immune-mediated liver injury and that this feature was essential in repairing necrotic lesions. At the early stage of injury, infiltrating MoMFs activated the Jagged1/notch homolog protein 2 (JAG1/NOTCH2) axis to induce cell death-resistant SRY-box transcription factor 9+ (SOX9+) hepatocytes near the necrotic lesions, which acted as a barrier from further injury. Subsequently, necrotic environment (hypoxia and dead cells) induced a cluster of complement 1q-positive (C1q+) MoMFs that promoted necrotic removal and liver repair, while Pdgfb+ MoMFs activated hepatic stellate cells (HSCs) to express α-smooth muscle actin and induce a strong contraction signal (YAP, pMLC) to squeeze and finally eliminate the necrotic lesions. In conclusion, MoMFs play a key role in repairing the necrotic lesions, not only by removing necrotic tissues, but also by inducing cell death-resistant hepatocytes to form a perinecrotic capsule and by activating α-smooth muscle actin-expressing HSCs to facilitate necrotic lesion resolution.


Subject(s)
Actins , Liver Neoplasms , Humans , Actins/metabolism , Liver/metabolism , Hepatocytes/metabolism , Macrophages/metabolism , Hepatic Stellate Cells/metabolism , Necrosis/metabolism , Necrosis/pathology , Liver Neoplasms/metabolism
10.
Methods Mol Biol ; 2669: 245-255, 2023.
Article in English | MEDLINE | ID: mdl-37247065

ABSTRACT

Histological techniques based on tissue colorations (e.g., hematoxylin-eosin, Sirius red) and immunostaining remain gold standard methodologies for diagnostic or phenotyping purposes in liver disease research and clinical hepatology. With the development of -omics technologies, greater information can be extracted from tissue sections. We describe a sequential immunostaining protocol consisting of repetitive cycles of immunostaining and chemically induced antibody stripping that can be readily applied to various formalin-fixed tissues (liver or other organs, mouse or human) and does not require specific equipment or commercial kits. Importantly, the combination of antibodies can be adapted according to specific clinical or scientific needs.


Subject(s)
Antibodies , Coloring Agents , Humans , Animals , Mice , Formaldehyde , Hematoxylin , Liver
11.
Front Mol Biosci ; 10: 1129831, 2023.
Article in English | MEDLINE | ID: mdl-36845555

ABSTRACT

Chronic liver diseases from varying etiologies generally lead to liver fibrosis and cirrhosis. Among them, non-alcoholic fatty liver disease (NAFLD) affects roughly one-quarter of the world population, thus representing a major and increasing public health burden. Chronic hepatocyte injury, inflammation (non-alcoholic steatohepatitis, NASH) and liver fibrosis are recognized soils for primary liver cancer, particularly hepatocellular carcinoma (HCC), being the third most common cause for cancer-related deaths worldwide. Despite recent advances in liver disease understanding, therapeutic options on pre-malignant and malignant stages remain limited. Thus, there is an urgent need to identify targetable liver disease-driving mechanisms for the development of novel therapeutics. Monocytes and macrophages comprise a central, yet versatile component of the inflammatory response, fueling chronic liver disease initiation and progression. Recent proteomic and transcriptomic studies performed at singular cell levels revealed a previously overlooked diversity of macrophage subpopulations and functions. Indeed, liver macrophages that encompass liver resident macrophages (also named Kupffer cells) and monocyte-derived macrophages, can acquire a variety of phenotypes depending on microenvironmental cues, and thus exert manifold and sometimes contradictory functions. Those functions range from modulating and exacerbating tissue inflammation to promoting and exaggerating tissue repair mechanisms (i.e., parenchymal regeneration, cancer cell proliferation, angiogenesis, fibrosis). Due to these central functions, liver macrophages represent an attractive target for the treatment of liver diseases. In this review, we discuss the multifaceted and contrary roles of macrophages in chronic liver diseases, with a particular focus on NAFLD/NASH and HCC. Moreover, we discuss potential therapeutic approaches targeting liver macrophages.

12.
Cell Mol Gastroenterol Hepatol ; 15(5): 1135-1145, 2023.
Article in English | MEDLINE | ID: mdl-36740045

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease affecting multiple cell types of the human liver. The high prevalence of NAFLD and the lack of approved therapies increase the demand for reliable models for the preclinical discovery of drug targets. In the last decade, multiple proof-of-principle studies have demonstrated human-specific NAFLD modeling in the dish. These systems have included technologies based on human induced pluripotent stem cell derivatives, liver tissue section cultures, intrahepatic cholangiocyte organoids, and liver-on-a-chip. These platforms differ in functional maturity, multicellularity, scalability, and spatial organization. Identifying an appropriate model for a specific NAFLD-related research question is challenging. Therefore, we review different platforms for their strengths and limitations in modeling NAFLD. To define the fidelity of the current human in vitro NAFLD models in depth, we define disease hallmarks within the NAFLD spectrum that range from steatosis to severe fibroinflammatory tissue injury. We discuss how the most common methods are efficacious in modeling genetic contributions and aspects of the early NAFLD-related tissue response. We also highlight the shortcoming of current models to recapitulate the complexity of inter-organ crosstalk and the chronic process of liver fibrosis-to-cirrhosis that usually takes decades in patients. Importantly, we provide methodological overviews and discuss implementation hurdles (eg, reproducibility or costs) to help choose the most appropriate NAFLD model for the individual research focus: hepatocyte injury, ductular reaction, cellular crosstalk, or other applications. In sum, we highlight current strategies and deficiencies to model NAFLD in the dish and propose a framework for the next generation of human-specific investigations.


Subject(s)
Induced Pluripotent Stem Cells , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Reproducibility of Results , Induced Pluripotent Stem Cells/metabolism , Liver Cirrhosis , Fibrosis
13.
Hepatology ; 78(1): 150-166, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36630995

ABSTRACT

BACKGROUND AND AIMS: The progression of chronic liver diseases towards liver cirrhosis is accompanied by drastic tissue changes. This study combines elaborate transcriptomic and histological methods aiming at spatially resolving the hepatic immune microenvironment in NAFLD (including NASH, primary sclerosing cholangitis, primary biliary cholangitis, and severe alcoholic hepatitis). APPROACH AND RESULTS: Human liver samples were subjected to RNA-sequencing (n=225) and imaging cytometry (n=99) across 3 independent patient cohorts. Liver samples from alcoholic hepatitis and primary biliary cholangitis patients were used for comparison. Myeloid populations were further characterized in corresponding mouse models. Imaging, clinical, and phenotypical data were combined for multidimensional analysis. NAFLD/NASH and primary sclerosing cholangitis disease stages were associated with loss of parenchymal areas, increased ductular cell accumulation, and infiltration of immune cells. NASH patients predominantly exhibited myeloid cell accumulation, whereas primary sclerosing cholangitis patients additionally had pronounced lymphoid cell responses. Correlating to disease stage, both etiologies displayed intense IBA1 + CD16 low CD163 low macrophage aggregation in nonparenchymal areas, with a distinct spatial proximity to ductular cells. Mouse models revealed that disease-associated IBA1 + hepatic macrophages originated from bone marrow-derived monocytes. Using an unbiased, machine learning-based algorithm, IBA1 in combination with hepatocyte and ductular cell immunostaining-predicted advanced cirrhosis in human NASH, primary sclerosing cholangitis, and alcoholic hepatitis. CONCLUSIONS: Loss of hepatocytes and increased ductular reaction are tightly associated with monocyte-derived macrophage accumulation and represent the most prominent common immunological feature revealing the progression of NAFLD, primary sclerosing cholangitis, primary biliary cholangitis, and alcoholic hepatitis, suggesting IBA1 + CD163 low macrophages are key pathogenic drivers of human liver disease progression across diverse etiologies.


Subject(s)
Cholangitis, Sclerosing , Hepatitis, Alcoholic , Non-alcoholic Fatty Liver Disease , Mice , Animals , Humans , Non-alcoholic Fatty Liver Disease/pathology , Cholangitis, Sclerosing/pathology , Hepatitis, Alcoholic/pathology , Liver/pathology , Liver Cirrhosis/complications , Macrophages , Disease Models, Animal
14.
J Clin Invest ; 132(14)2022 07 15.
Article in English | MEDLINE | ID: mdl-35838051

ABSTRACT

Intrahepatic neutrophil infiltration has been implicated in severe alcoholic hepatitis (SAH) pathogenesis; however, the mechanism underlying neutrophil-induced injury in SAH remains obscure. This translational study aims to describe the patterns of intrahepatic neutrophil infiltration and its involvement in SAH pathogenesis. Immunohistochemistry analyses of explanted livers identified two SAH phenotypes despite a similar clinical presentation, one with high intrahepatic neutrophils (Neuhi), but low levels of CD8+ T cells, and vice versa. RNA-Seq analyses demonstrated that neutrophil cytosolic factor 1 (NCF1), a key factor in controlling neutrophilic ROS production, was upregulated and correlated with hepatic inflammation and disease progression. To study specifically the mechanisms related to Neuhi in AH patients and liver injury, we used the mouse model of chronic-plus-binge ethanol feeding and found that myeloid-specific deletion of the Ncf1 gene abolished ethanol-induced hepatic inflammation and steatosis. RNA-Seq analysis and the data from experimental models revealed that neutrophilic NCF1-dependent ROS promoted alcoholic hepatitis (AH) by inhibiting AMP-activated protein kinase (a key regulator of lipid metabolism) and microRNA-223 (a key antiinflammatory and antifibrotic microRNA). In conclusion, two distinct histopathological phenotypes based on liver immune phenotyping are observed in SAH patients, suggesting a separate mechanism driving liver injury and/or failure in these patients.


Subject(s)
Hepatitis, Alcoholic , Liver Diseases, Alcoholic , Animals , Ethanol/adverse effects , Hepatitis, Alcoholic/genetics , Hepatitis, Alcoholic/metabolism , Inflammation/pathology , Liver/metabolism , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/metabolism , Mice , Mice, Inbred C57BL , Phenotype , Reactive Oxygen Species/metabolism
15.
Bioengineered ; 13(5): 11740-11751, 2022 05.
Article in English | MEDLINE | ID: mdl-35521691

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is highly possible to progress to cirrhosis, malignancy, and liver failure through fibrogenesis. The enormous potential of pathogenetic and therapeutic targets in NAFLD has been revealed. This study aimed to explore novel factors potentially indicating or mediating NAFLD progression. Multiple bulk and single-cell RNA sequencing datasets were used, in which landscapes of cell populations were clarified to characterize immune cell infiltration. Significantly high infiltration of macrophages (MPs) was discovered during NAFLD progression. Samples in bulk NASH datasets were regrouped by MP level. Highly differentially expressed genes (DEGs) were identified in the Ctrl vs. NASH comparison, low MP vs. high MP comparison, and the weighted gene co-expression network analysis (WGCNA) clusters. Eight hub genes were identified as promising targets by protein-protein interaction analysis and validated in fibrosis progression, microRNA (miR)-protein interactions were predicted, and the hub genes were verified in a free fatty acid (FFA)-induced macrophage injury model. The results showed that Gasdermin D (GSDMD) was upregulated with fibrosis progression in NAFLD and was associated with macrophage infiltration. In addition, a potential regulator (miR-4715-3p) was correlated with GSDMD. The miR-4715-3p/GSDMD axis potentially modulates macrophage-associated immunity and indicates fibrosis progression in NAFLD.


Subject(s)
MicroRNAs , Non-alcoholic Fatty Liver Disease , Humans , Liver/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Macrophages/pathology , MicroRNAs/genetics , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Phosphate-Binding Proteins , Pore Forming Cytotoxic Proteins , Transcriptome/genetics
16.
Nat Commun ; 13(1): 1303, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35288557

ABSTRACT

Extravasation of monocytes into tissue and to the site of injury is a fundamental immunological process, which requires rapid responses via post translational modifications (PTM) of proteins. Protein arginine methyltransferase 7 (PRMT7) is an epigenetic factor that has the capacity to mono-methylate histones on arginine residues. Here we show that in chronic obstructive pulmonary disease (COPD) patients, PRMT7 expression is elevated in the lung tissue and localized to the macrophages. In mouse models of COPD, lung fibrosis and skin injury, reduced expression of PRMT7 associates with decreased recruitment of monocytes to the site of injury and hence less severe symptoms. Mechanistically, activation of NF-κB/RelA in monocytes induces PRMT7 transcription and consequential mono-methylation of histones at the regulatory elements of RAP1A, which leads to increased transcription of this gene that is responsible for adhesion and migration of monocytes. Persistent monocyte-derived macrophage accumulation leads to ALOX5 over-expression and accumulation of its metabolite LTB4, which triggers expression of ACSL4 a ferroptosis promoting gene in lung epithelial cells. Conclusively, inhibition of arginine mono-methylation might offer targeted intervention in monocyte-driven inflammatory conditions that lead to extensive tissue damage if left untreated.


Subject(s)
Protein-Arginine N-Methyltransferases , Pulmonary Disease, Chronic Obstructive , Animals , Arginine/metabolism , Histones/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Mice , Monocytes/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Pulmonary Disease, Chronic Obstructive/genetics
18.
Int J Biol Sci ; 18(5): 1944-1960, 2022.
Article in English | MEDLINE | ID: mdl-35342340

ABSTRACT

Chronic inflammation is a key component in the development of virtually all types of primary liver cancers. However, how chronic inflammation potentiates or even may initiate liver parenchymal cell transformation remains unclear. Cancer stem cells (CSCs) represent an exciting target for novel anticancer therapeutic strategies in several types of cancers and were also described in primary liver cancers as tumor initiating cells. Recently, we reported a key role of Interleukin (IL)-17 in Liver Progenitor Cell (LPC) accumulation in preneoplastic cirrhotic livers. In this study, we evidenced in vitro, that long-term stimulation of LPCs with IL-17 led to their transformation into CSCs. Indeed, they acquired CSC-marker expression, and self-renewal properties, showed by their increased capacity to form spheroids. The miRNome analysis revealed that long-term IL-17 treatment of LPCs led to a 90% decrease in miR-122 expression. In a model using immunodeficient mice, ectopic engraftment of LPCs in an IL-17-enriched environment led to tumor occurrence with an aggressive phenotype. Contrastingly, in a murine model of hepatocellular carcinoma induced by a unique injection of diethyl-nitrosamine associated with chronic administration of carbon tetrachloride, IL-17-deficiency or anti-IL-17 therapy protected mice from liver tumor growth. In conclusion, we showed that a chronic exposure of LPCs to IL-17 cytokine promotes their transformation into CSCs. In addition, we demonstrated that IL-17-neutralizing strategies limit CSC occurrence and liver tumor progression through miR-122 restored-expression.


Subject(s)
Liver Neoplasms , MicroRNAs , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic/metabolism , Down-Regulation , Inflammation/metabolism , Interleukin-17/genetics , Interleukin-17/metabolism , Liver Neoplasms/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplastic Stem Cells/metabolism
19.
Int J Mol Sci ; 23(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35269812

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) and its progressive form nonalcoholic steatohepatitis (NASH) comprise a spectrum of chronic liver diseases in the global population that can lead to end-stage liver disease and hepatocellular carcinoma (HCC). NAFLD is closely linked to the metabolic syndrome, and comorbidities such as type 2 diabetes, obesity and insulin resistance aggravate liver disease, while NAFLD promotes cardiovascular risk in affected patients. The pathomechanisms of NAFLD are multifaceted, combining hepatic factors including lipotoxicity, mechanisms of cell death and liver inflammation with extrahepatic factors including metabolic disturbance and dysbiosis. Nuclear receptors (NRs) are a family of ligand-controlled transcription factors that regulate glucose, fat and cholesterol homeostasis and modulate innate immune cell functions, including liver macrophages. In parallel with metabolic derangement in NAFLD, altered NR signaling is frequently observed and might be involved in the pathogenesis. Therapeutically, clinical data indicate that single drug targets thus far have been insufficient for reaching patient-relevant endpoints. Therefore, combinatorial treatment strategies with multiple drug targets or drugs with multiple mechanisms of actions could possibly bring advantages, by providing a more holistic therapeutic approach. In this context, peroxisome proliferator-activated receptors (PPARs) and other NRs are of great interest as they are involved in wide-ranging and multi-organ activities associated with NASH progression or regression. In this review, we summarize recent advances in understanding the pathogenesis of NAFLD, focusing on mechanisms of cell death, immunometabolism and the role of NRs. We outline novel therapeutic strategies and discuss remaining challenges.


Subject(s)
Carcinoma, Hepatocellular , Diabetes Mellitus, Type 2 , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Carcinoma, Hepatocellular/metabolism , Diabetes Mellitus, Type 2/metabolism , Fibrosis , Humans , Inflammation/pathology , Liver/metabolism , Liver Neoplasms/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism
20.
Curr Opin Gastroenterol ; 38(2): 114-120, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35098932

ABSTRACT

PURPOSE OF REVIEW: Cholangiopathies are a heterogeneous class of liver diseases where cholangiocytes are the main targets of liver injury. Although available and emerging therapies mainly target bile acids (ursodeoxycholic acid/UDCA, 24-Norursodeoxycholic acid/norUDCA) and related signaling pathways (obeticholic acid, fibrates, FXR, and PPAR agonists), the mechanisms underlying inflammation, ductular reaction and fibrosis in cholestatic liver diseases remain poorly understood. RECENT FINDINGS: Data from patients with cholestatic diseases, such as primary biliary cholangitis (PBC) or primary sclerosing cholangitis (PSC) as well as mouse models of biliary injury emphasize the role of immune cells in the pathogenesis of cholestatic disorders and indicate diverse functions of hepatic macrophages. Their versatile polarization phenotypes and their capacity to interact with other cell types (e.g. cholangiocytes, other immune cells) make macrophages central actors in the progression of cholangiopathies. SUMMARY: In this review, we summarize recent findings on the response of hepatic macrophages to cholestasis and biliary injury and their involvement in the progression of cholangiopathies. Furthermore, we discuss how recent discoveries may foster the development of innovative therapies to treat patients suffering from cholestatic liver diseases, in particular, treatments targeting macrophages to limit hepatic inflammation.


Subject(s)
Cholangitis, Sclerosing , Cholestasis , Animals , Bile Acids and Salts , Cholangitis, Sclerosing/genetics , Humans , Inflammation , Macrophages , Mice , Ursodeoxycholic Acid/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...