Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
1.
Cell Biosci ; 14(1): 69, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824560

ABSTRACT

Hepatocellular carcinoma (HCC) incidence is continuously increasing worldwide, due to the rise of metabolic dysfunction-associated steatohepatitis (MASH) cases. Cholesterol is an essential driver of the metabolic dysregulations that promote HCC progression. Liver X Receptor (LXR) is a nuclear receptor best known for the regulation of lipid and cholesterol homeostasis, with a prominent function in the liver and in the intestine. Here, we aimed to explore whether modifications in intestinal lipid metabolism may contribute to the onset of HCC, particularly taking into account cholesterol metabolism and LXRs. To study the progression of MASH to HCC, we induced metabolic HCC in wild-type male mice and mice carrying an intestinal chronic activation of LXRα. Also, we analysed human hepatic transcriptome datasets. The increased consumption of fat and carbohydrates drives the intestinal activation of LXRα and accelerates the onset of the hepatic tumours. Chronic intestinal-specific activation of LXRα enhances HCC progression only in the presence of a high cholesterol intake. In HCC, despite the increased hepatic cholesterol content, LXR is not active, thus driving liver cancer development. Intriguingly, in line with these results in the mouse model, LXR transcriptome is also downregulated in human hepatocarcinoma and its expression level in liver tumours directly correlates with a decreased survival rate in patients. Overall, our findings establish the relevance of the intestine in influencing the susceptibility to MASH-HCC and point to intestinal LXRα activation as a driver of metabolic liver cancer in the presence of dietary cholesterol.

2.
EMBO Rep ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769419

ABSTRACT

Vitamin A (retinol) is distributed via the blood bound to its specific carrier protein, retinol-binding protein 4 (RBP4). Retinol-loaded RBP4 is secreted into the circulation exclusively from hepatocytes, thereby mobilizing hepatic retinoid stores that represent the major vitamin A reserves in the body. The relevance of extrahepatic retinoid stores for circulating retinol and RBP4 levels that are usually kept within narrow physiological limits is unknown. Here, we show that fasting affects retinoid mobilization in a tissue-specific manner, and that hormone-sensitive lipase (HSL) in adipose tissue is required to maintain serum concentrations of retinol and RBP4 during fasting in mice. We found that extracellular retinol-free apo-RBP4 induces retinol release by adipocytes in an HSL-dependent manner. Consistently, global or adipocyte-specific HSL deficiency leads to an accumulation of retinoids in adipose tissue and a drop of serum retinol and RBP4 during fasting, which affects retinoid-responsive gene expression in eye and kidney and lowers renal retinoid content. These findings establish a novel crosstalk between liver and adipose tissue retinoid stores for the maintenance of systemic vitamin A homeostasis during fasting.

3.
Environ Int ; 184: 108485, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38350259

ABSTRACT

BACKGROUND: Pesticides cause a wide range of deleterious health effects, including metabolic disorders. Little is known about the effects of dietary pesticide exposure on body weight (BW) change in the general population. We aimed to investigate the role of dietary pesticide exposure in BW change among NutriNet-Santé participants, focusing on potential sexual dimorphism. METHODS: Participants completed a Food Frequency Questionnaire (2014), assessing conventional and organic food consumption. Dietary exposure from plant foods of 25 commonly used pesticides was estimated using a residue database, accounting for agricultural practices (conventional and organic). Exposure profiles based on dietary patterns were computed using Non-negative Matrix Factorization (NMF). Mixed models were used to estimate the associations between BW change and exposure to pesticide mixtures, overall and after stratification by sex and menopausal status. RESULTS: The final sample included 32,062 participants (8,211 men, 10,637 premenopausal, and 13,214 postmenopausal women). The median (IQR) follow-up was 7.0 (4.4; 8.0) years. Four pesticides profiles were inferred. Overall, men and postmenopausal women lost BW during follow-up, whereas premenopausal women gained BW. Higher exposure to NMF3, reflecting a lower exposure to synthetic pesticides, was associated with a lower BW gain, especially in premenopausal women (ß(95 %CI) = -0.04 (-0.07; 0) kg/year, p = 0.04). Higher exposure to NMF2, highly positively correlated with a mixture of synthetic pesticides (azoxystrobin, boscalid, chlorpropham, cyprodinil, difenoconazole, fenhexamid, iprodione, tebuconazole, and lamda-cyhalothrin), was associated with a higher BW loss in men (ß(95 %CI) = -0.05 (-0.08; -0.03) kg/year, p < 0.0001). No associations were observed for NMF1 and 4. CONCLUSIONS: This study suggests a role of pesticide exposure, inferred from dietary patterns, on BW change, with sexually dimorphic actions, including a potential role of a lower exposure to synthetic pesticides on BW change in women. In men, exposure to a specific pesticide mixture was associated with higher BW loss. The underlying mechanisms need further elucidation.


Subject(s)
Pesticides , Male , Adult , Humans , Female , Pesticides/adverse effects , Dietary Exposure , Food, Organic , Dietary Patterns , Body Weight , Diet
4.
Proc Natl Acad Sci U S A ; 121(7): e2309131121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38315852

ABSTRACT

Most of the nitrogen (N) accessible for life is trapped in dinitrogen (N2), the most stable atmospheric molecule. In order to be metabolized by living organisms, N2 has to be converted into biologically assimilable forms, so-called fixed N. Nowadays, nearly all the N-fixation is achieved through biological and anthropogenic processes. However, in early prebiotic environments of the Earth, N-fixation must have occurred via natural abiotic processes. One of the most invoked processes is electrical discharges, including from thunderstorms and lightning associated with volcanic eruptions. Despite the frequent occurrence of volcanic lightning during explosive eruptions and convincing laboratory experimentation, no evidence of substantial N-fixation has been found in any geological archive. Here, we report on the discovery of a significant amount of nitrate in volcanic deposits from Neogene caldera-forming eruptions, which are well correlated with the concentrations of species directly emitted by volcanoes (sulfur, chlorine). The multi-isotopic composition (δ18O, Δ17O) of the nitrates reveals that they originate from the atmospheric oxidation of nitrogen oxides formed by volcanic lightning. According to these first geological volcanic nitrate archive, we estimate that, on average, about 60 Tg of N can be fixed during a large explosive event. Our findings hint at a unique role potentially played by subaerial explosive eruptions in supplying essential ingredients for the emergence of life on Earth.

5.
EMBO Mol Med ; 16(2): 238-250, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38228803

ABSTRACT

FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis. On top of its physiological metabolic role, FGF19 has been identified as a potentially targetable oncogenic driver, notably in hepatocellular carcinoma (HCC). Nevertheless, FGF19 remained an attractive candidate for treatment of metabolic disease, prompting the development of analogs uncoupling its metabolic and tumor-promoting activities. Using pre-clinical mice models of somatic mutation driven HCC, we assessed the oncogenicity of FGF19 in combination with frequent HCC tumorigenic alterations: p53 inactivation, CTNNB1 mutation, CCND1 or MYC overexpression. Our data revealed a strong oncogenic cooperation between FGF19 and MYC. Most importantly, we show that this oncogenic synergy is conserved with a FGF19-analog Aldafermin (NGM282), designed to solely mimic the hormone's metabolic functions. In particular, even a short systemic treatment with recombinant proteins triggered rapid appearance of proliferative foci of MYC-expressing hepatocytes. The fact that FGF19 analog Aldafermin is not fully devoid of the hormone's oncogenic properties raises concerns in the context of its potential use for patients with damaged, mutation-prone liver.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Mice , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Hormones
6.
Mol Nutr Food Res ; 68(1): e2300491, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37888831

ABSTRACT

SCOPE: Non-alcoholic fatty liver disease (NAFLD) is a sexually dimorphic disease influenced by dietary factors. Here, the metabolic and hepatic effects of dietary amino acid (AA) source is assessed in Western diet (WD)-induced NAFLD in male and female mice. METHODS AND RESULTS: The AA source is either casein or a free AA mixture mimicking the composition of casein. As expected, males fed a casein-based WD display glucose intolerance, fasting hyperglycemia, and insulin-resistance and develop NAFLD associated with changes in hepatic gene expression and microbiota dysbiosis. In contrast, males fed the AA-based WD show no steatosis, a similar gene expression profile as males fed a control diet, and a distinct microbiota composition compared to males fed a casein-based WD. Females are protected against WD-induced liver damage, hepatic gene expression, and gut microbiota changes regardless of the AA source. CONCLUSIONS: Free dietary AA intake prevents the unhealthy metabolic outcomes of a WD preferentially in male mice.


Subject(s)
Non-alcoholic Fatty Liver Disease , Male , Female , Animals , Mice , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/prevention & control , Caseins/pharmacology , Liver/metabolism , Diet, Western/adverse effects , Amino Acids/metabolism , Mice, Inbred C57BL , Diet, High-Fat
7.
JHEP Rep ; 6(1): 100930, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38149074

ABSTRACT

Background & Aims: The constitutive androstane receptor (CAR) is a nuclear receptor that binds diverse xenobiotics and whose activation leads to the modulation of the expression of target genes involved in xenobiotic detoxification and energy metabolism. Although CAR hepatic activity is considered to be higher in women than in men, its sex-dependent response to an acute pharmacological activation has seldom been investigated. Methods: The hepatic transcriptome, plasma markers, and hepatic metabolome, were analysed in Car+/+ and Car-/- male and female mice treated either with the CAR-specific agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) or with vehicle. Results: Although 90% of TCPOBOP-sensitive genes were modulated in a sex-independent manner, the remaining 10% showed almost exclusive female liver specificity. These female-specific CAR-sensitive genes were mainly involved in xenobiotic metabolism, inflammation, and extracellular matrix organisation. CAR activation also induced higher hepatic oxidative stress and hepatocyte cytolysis in females than in males. Hepatic expression of flavin monooxygenase 3 (Fmo3) was almost abolished and was associated with a decrease in hepatic trimethylamine-N-oxide (TMAO) concentration in TCPOBOP-treated females. In line with a potential role in the control of TMAO homeostasis, CAR activation decreased platelet hyper-responsiveness in female mice supplemented with dietary choline. Conclusions: More than 10% of CAR-sensitive genes are sex-specific and influence hepatic and systemic responses such as platelet aggregation. CAR activation may be an important mechanism of sexually-dimorphic drug-induced liver injury. Impact and implications: CAR is activated by many drugs and pollutants. Its pharmacological activation had a stronger impact on hepatic gene expression and metabolism in females than in males, and had a specific impact on liver toxicity and trimethylamine metabolism. Sexual dimorphism should be considered when testing and/or prescribing xenobiotics known to activate CAR.

8.
JHEP Rep ; 5(11): 100853, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37886435

ABSTRACT

Background & Aims: The gut-liver axis modulates the progression of metabolic dysfunction-associated steatotic liver disease (MASLD), a spectrum of conditions characterised by hepatic steatosis and a progressive increase of inflammation and fibrosis, culminating in metabolic dysfunction-associated steatohepatitis. Peroxisome proliferator-activated receptor-gamma coactivator 1α (Pgc1α) is a transcriptional co-regulator of mitochondrial activity and lipid metabolism. Here, the intestinal-specific role of Pgc1α was analysed in liver steatosis and fibrosis. Methods: We used a mouse model in which Pgc1α was selectively deleted from the intestinal epithelium. We fed these mice and their wild-type littermates a Western diet to recapitulate the major features of liver steatosis (after 2 months of diet) and metabolic dysfunction-associated steatohepatitis (after 4 months of diet). The chow diet was administered as a control diet. Results: In humans and mice, low expression of intestinal Pgc1α is inversely associated with liver steatosis, inflammation, and fibrosis. Intestinal disruption of Pgc1α impairs the transcription of a wide number of genes, including the cholesterol transporter Niemann-Pick C1-like 1 (Npc1l1), thus limiting the uptake of cholesterol from the gut. This results in a lower cholesterol accretion in the liver and a decreased production of new fatty acids, which protect the liver from lipotoxic lipid species accumulation, inflammation, and related fibrotic processes. Conclusions: In humans and mice, intestinal Pgc1α induction during Western diet may be another culprit driving hepatic steatosis and fibrosis. Here, we show that enterocyte-specific Pgc1α ablation protects the liver from steatosis and fibrosis by reducing intestinal cholesterol absorption, with subsequent decrease of cholesterol and de novo fatty acid accumulation in the liver. Impact and implications: Liver diseases result from several insults, including signals from the gut. Although the incidence of liver diseases is continuously increasing worldwide, effective drug therapy is still lacking. Here, we showed that the modulation of an intestinal coactivator regulates the liver response to a Western diet, by limiting the uptake of dietary cholesterol. This results in a lower accumulation of hepatic lipids together with decreased inflammation and fibrosis, thus limiting the progression of liver steatosis and fibrosis towards severe end-stage diseases.

9.
Nat Commun ; 14(1): 5329, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37658064

ABSTRACT

Dietary lipids can affect metabolic health through gut microbiota-mediated mechanisms, but the influence of lipid-microbiota interaction on liver steatosis is largely unknown. We investigate the impact of dietary lipids on human gut microbiota composition and the effects of microbiota-lipid interactions on steatosis in male mice. In humans, low intake of saturated fatty acids (SFA) is associated with increased microbial diversity independent of fiber intake. In mice, poorly absorbed dietary long-chain SFA, particularly stearic acid, induce a shift in bile acid profile and improved metabolism and steatosis. These benefits are dependent on the gut microbiota, as they are transmitted by microbial transfer. Diets enriched in polyunsaturated fatty acids are protective against steatosis but have minor influence on the microbiota. In summary, we find that diets enriched in poorly absorbed long-chain SFA modulate gut microbiota profiles independent of fiber intake, and this interaction is relevant to improve metabolism and decrease liver steatosis.


Subject(s)
Fatty Liver , Gastrointestinal Microbiome , Microbiota , Humans , Male , Animals , Mice , Fatty Acids , Bile Acids and Salts , Dietary Fats
10.
JHEP Rep ; 5(8): 100794, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37520673

ABSTRACT

Background & Aims: Liver regeneration is a repair process in which metabolic reprogramming of parenchymal and inflammatory cells plays a major role. Monoacylglycerol lipase (MAGL) is an ubiquitous enzyme at the crossroad between lipid metabolism and inflammation. It converts monoacylglycerols into free fatty acids and metabolises 2-arachidonoylglycerol into arachidonic acid, being thus the major source of pro-inflammatory prostaglandins in the liver. In this study, we investigated the role of MAGL in liver regeneration. Methods: Hepatocyte proliferation was studied in vitro in hepatoma cell lines and ex vivo in precision-cut human liver slices. Liver regeneration was investigated in mice treated with a pharmacological MAGL inhibitor, MJN110, as well as in animals globally invalidated for MAGL (MAGL-/-) and specifically invalidated in hepatocytes (MAGLHep-/-) or myeloid cells (MAGLMye-/-). Two models of liver regeneration were used: acute toxic carbon tetrachloride injection and two-thirds partial hepatectomy. MAGLMye-/- liver macrophages profiling was analysed by RNA sequencing. A rescue experiment was performed by in vivo administration of interferon receptor antibody in MAGLMye-/- mice. Results: Precision-cut human liver slices from patients with chronic liver disease and human hepatocyte cell lines exposed to MJN110 showed reduced hepatocyte proliferation. Mice with global invalidation or mice treated with MJN110 showed blunted liver regeneration. Moreover, mice with specific deletion of MAGL in either hepatocytes or myeloid cells displayed delayed liver regeneration. Mechanistically, MAGLHep-/- mice showed reduced liver eicosanoid production, in particular prostaglandin E2 that negatively impacts on hepatocyte proliferation. MAGL inhibition in macrophages resulted in the induction of the type I interferon pathway. Importantly, neutralising the type I interferon pathway restored liver regeneration of MAGLMye-/- mice. Conclusions: Our data demonstrate that MAGL promotes liver regeneration by hepatocyte and macrophage reprogramming. Impact and Implications: By using human liver samples and mouse models of global or specific cell type invalidation, we show that the monoacylglycerol pathway plays an essential role in liver regeneration. We unveil the mechanisms by which MAGL expressed in both hepatocytes and macrophages impacts the liver regeneration process, via eicosanoid production by hepatocytes and the modulation of the macrophage interferon pathway profile that restrains hepatocyte proliferation.

11.
Sci Total Environ ; 891: 164436, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37247733

ABSTRACT

Obesity, which is a worldwide public health issue, is associated with chronic inflammation that contribute to long-term complications, including insulin resistance, type 2 diabetes and non-alcoholic fatty liver disease. We hypothesized that obesity may also influence the sensitivity to food contaminants, such as fumonisin B1 (FB1), a mycotoxin produced mainly by the Fusarium verticillioides. FB1, a common contaminant of corn, is the most abundant and best characterized member of the fumonisins family. We investigated whether diet-induced obesity could modulate the sensitivity to oral FB1 exposure, with emphasis on gut health and hepatotoxicity. Thus, metabolic effects of FB1 were assessed in obese and non-obese male C57BL/6J mice. Mice received a high-fat diet (HFD) or normal chow diet (CHOW) for 15 weeks. Then, during the last three weeks, mice were exposed to these diets in combination or not with FB1 (10 mg/kg body weight/day) through drinking water. As expected, HFD feeding induced significant body weight gain, increased fasting glycemia, and hepatic steatosis. Combined exposure to HFD and FB1 resulted in body weight loss and a decrease in fasting blood glucose level. This co-exposition also induces gut dysbiosis, an increase in plasma FB1 level, a decrease in liver weight and hepatic steatosis. Moreover, plasma transaminase levels were significantly increased and associated with liver inflammation in HFD/FB1-treated mice. Liver gene expression analysis revealed that the combined exposure to HFD and FB1 was associated with reduced expression of genes involved in lipogenesis and increased expression of immune response and cell cycle-associated genes. These results suggest that, in the context of obesity, FB1 exposure promotes gut dysbiosis and severe liver inflammation. To our knowledge, this study provides the first example of obesity-induced hepatitis in response to a food contaminant.


Subject(s)
Chemical and Drug Induced Liver Injury , Diabetes Mellitus, Type 2 , Fumonisins , Mice , Male , Animals , Fumonisins/toxicity , Fumonisins/metabolism , Diabetes Mellitus, Type 2/metabolism , Dysbiosis , Mice, Inbred C57BL , Liver/metabolism , Obesity/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Inflammation/chemically induced
12.
Cancer Discov ; 13(7): 1720-1747, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37012202

ABSTRACT

Although transcription factor CCAAT-enhancer binding protein α (C/EBPα) is critical for normal and leukemic differentiation, its role in cell and metabolic homeostasis is largely unknown in cancer. Here, multiomics analyses uncovered a coordinated activation of C/EBPα and Fms-like tyrosine kinase 3 (FLT3) that increased lipid anabolism in vivo and in patients with FLT3-mutant acute myeloid leukemia (AML). Mechanistically, C/EBPα regulated the fatty acid synthase (FASN)-stearoyl-CoA desaturase (SCD) axis to promote fatty acid (FA) biosynthesis and desaturation. We further demonstrated that FLT3 or C/EBPα inactivation decreased monounsaturated FA incorporation to membrane phospholipids through SCD downregulation. Consequently, SCD inhibition enhanced susceptibility to lipid redox stress that was exploited by combining FLT3 and glutathione peroxidase 4 inhibition to trigger lipid oxidative stress, enhancing ferroptotic death of FLT3-mutant AML cells. Altogether, our study reveals a C/EBPα function in lipid homeostasis and adaptation to redox stress, and a previously unreported vulnerability of FLT3-mutant AML to ferroptosis with promising therapeutic application. SIGNIFICANCE: FLT3 mutations are found in 30% of AML cases and are actionable by tyrosine kinase inhibitors. Here, we discovered that C/EBPα regulates FA biosynthesis and protection from lipid redox stress downstream mutant-FLT3 signaling, which confers a vulnerability to ferroptosis upon FLT3 inhibition with therapeutic potential in AML. This article is highlighted in the In This Issue feature, p. 1501.


Subject(s)
Ferroptosis , Leukemia, Myeloid, Acute , Humans , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism , Fatty Acids , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mutation , Oxidative Stress , Protein Kinase Inhibitors/therapeutic use , Cell Line, Tumor
13.
J Hum Evol ; 172: 103254, 2022 11.
Article in English | MEDLINE | ID: mdl-36116183

ABSTRACT

The Early Pleistocene site of Dmanisi is now well known for its large number of fossils of early Homo erectus as well as associated artifacts and faunal remains, recovered mainly in pipe-related geologic features. Testing in the M5 unit 100 m to the west of the main excavations revealed a thick stratigraphy with no evidence of pipes or gullies, indicating that the geologic record at Dmanisi included spatially distinct sedimentary environments that needed further investigation. Here we report the results of a geoarchaeological program to collect data bearing on contexts and formation processes over a large area of the promontory. That work has defined over 40,000 m2 of in situ deposits with artifacts and faunas. Stratum A ashes bury the uppermost Mashavera Basalt, which we have dated to 1.8 Ma in the M5 block. The Stratum A deposits contain stratified occupations that accumulated quickly and offer good potential for recovery of in situ materials. Stratum B1 deposits above the A/B unconformity include all of the pipe and gully facies at Dmanisi, reflecting a brief but very intense phase of geomorphic change. Those deposits contain the majority of faunas and all of the hominin fossils. B1 slope facies offer excellent formation contexts away from the piped area, and all B1 deposits are sealed by Stratum B2 over the whole promontory. Strata B2 to B5 register a return to slope facies, with no further evidence of pipes or gullies. Those deposits also present excellent contexts for recovery of in situ occupations. Overall, Dmanisi's geologic history preserves an exceptional record of the activities and environmental context of occupations during the first colonization of Eurasia.


Subject(s)
Hominidae , Animals , Facies , Fossils , Geology
14.
Hepatol Commun ; 6(10): 2937-2949, 2022 10.
Article in English | MEDLINE | ID: mdl-35903850

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is defined by a set of hepatic conditions ranging from steatosis to steatohepatitis (NASH), characterized by inflammation and fibrosis, eventually predisposing to hepatocellular carcinoma (HCC). Together with fatty acids (FAs) originated from adipose lipolysis and hepatic lipogenesis, intestinal-derived FAs are major contributors of steatosis. However, the role of mono-unsaturated FAs (MUFAs) in NAFLD development is still debated. We previously established the intestinal capacity to produce MUFAs, but its consequences in hepatic functions are still unknown. Here, we aimed to determine the role of the intestinal MUFA-synthetizing enzyme stearoyl-CoA desaturase 1 (SCD1) in NAFLD. We used intestinal-specific Scd1-KO (iScd1-/- ) mice and studied hepatic dysfunction in different models of steatosis, NASH, and HCC. Intestinal-specific Scd1 deletion decreased hepatic MUFA proportion. Compared with controls, iScd1-/- mice displayed increased hepatic triglyceride accumulation and derangement in cholesterol homeostasis when fed a MUFA-deprived diet. Then, on Western diet feeding, iScd1-/- mice triggered inflammation and fibrosis compared with their wild-type littermates. Finally, intestinal-Scd1 deletion predisposed mice to liver cancer. Conclusions: Collectively, these results highlight the major importance of intestinal MUFA metabolism in maintaining hepatic functions and show that gut-derived MUFAs are protective from NASH and HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Carcinoma, Hepatocellular/genetics , Cholesterol , Diet, Western , Fatty Acids , Fatty Acids, Monounsaturated/metabolism , Fibrosis , Inflammation , Liver Neoplasms/genetics , Mice , Non-alcoholic Fatty Liver Disease/genetics , Stearoyl-CoA Desaturase/genetics , Triglycerides/metabolism
15.
Cell Rep ; 39(10): 110910, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35675775

ABSTRACT

In hepatocytes, peroxisome proliferator-activated receptor α (PPARα) orchestrates a genomic and metabolic response required for homeostasis during fasting. This includes the biosynthesis of ketone bodies and of fibroblast growth factor 21 (FGF21). Here we show that in the absence of adipose triglyceride lipase (ATGL) in adipocytes, ketone body and FGF21 production is impaired upon fasting. Liver gene expression analysis highlights a set of fasting-induced genes sensitive to both ATGL deletion in adipocytes and PPARα deletion in hepatocytes. Adipose tissue lipolysis induced by activation of the ß3-adrenergic receptor also triggers such PPARα-dependent responses not only in the liver but also in brown adipose tissue (BAT). Intact PPARα activity in hepatocytes is required for the cross-talk between adipose tissues and the liver during fat mobilization.


Subject(s)
Lipolysis , PPAR alpha , Adipose Tissue/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Hepatocytes/metabolism , Ketone Bodies/metabolism , Lipolysis/physiology , PPAR alpha/metabolism
16.
Environ Health ; 21(1): 57, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35614475

ABSTRACT

BACKGROUND: Studies focusing on dietary pesticides in population-based samples are scarce and little is known about potential mixture effects. We aimed to assess associations between dietary pesticide exposure profiles and Type 2 Diabetes (T2D) among NutriNet-Santé cohort participants. METHODS: Participants completed a Food Frequency Questionnaire at baseline, assessing conventional and organic food consumption. Exposures to 25 active substances used in European Union pesticides were estimated using the Chemisches und Veterinäruntersuchungsamt Stuttgart residue database accounting for farming practices. T2D were identified through several sources. Exposure profiles were established using Non-Negative Matrix Factorization (NMF), adapted for sparse data. Cox models adjusted for known confounders were used to estimate hazard ratios (HR) and 95% confidence interval (95% CI), for the associations between four NMF components, divided into quintiles (Q) and T2D risk. RESULTS: The sample comprised 33,013 participants aged 53 years old on average, including 76% of women. During follow-up (median: 5.95 years), 340 incident T2D cases were diagnosed. Positive associations were detected between NMF component 1 (reflecting highest exposure to several synthetic pesticides) and T2D risk on the whole sample: HRQ5vsQ1 = 1.47, 95% CI (1.00, 2.18). NMF Component 3 (reflecting low exposure to several synthetic pesticides) was associated with a decrease in T2D risk, among those with high dietary quality only (high adherence to French dietary guidelines, including high plant foods consumption): HRQ5vsQ1 = 0.31, 95% CI (0.10, 0.94). CONCLUSIONS: These findings suggest a role of dietary pesticide exposure in T2D risk, with different effects depending on which types of pesticide mixture participants are exposed to. These associations need to be confirmed in other types of studies and settings, and could have important implications for developing prevention strategies (regulation, dietary guidelines). TRIAL REGISTRATION: This study is registered in ClinicalTrials.gov ( NCT03335644 ).


Subject(s)
Diabetes Mellitus, Type 2 , Pesticides , Cohort Studies , Diabetes Mellitus, Type 2/epidemiology , Diet , Dietary Exposure , Female , Food, Organic , Humans , Middle Aged , Risk Factors
17.
Cell Rep ; 39(2): 110674, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35417722

ABSTRACT

Liver physiology is circadian and sensitive to feeding and insulin. Food intake regulates insulin secretion and is a dominant signal for the liver clock. However, how much insulin contributes to the effect of feeding on the liver clock and rhythmic gene expression remains to be investigated. Insulin action partly depends on changes in insulin receptor (IR)-dependent gene expression. Here, we use hepatocyte-restricted gene deletion of IR to evaluate its role in the regulation and oscillation of gene expression as well as in the programming of the circadian clock in the adult mouse liver. We find that, in the absence of IR, the rhythmicity of core-clock gene expression is altered in response to day-restricted feeding. This change in core-clock gene expression is associated with defective reprogramming of liver gene expression. Our data show that an intact hepatocyte insulin receptor is required to program the liver clock and associated rhythmic gene expression.


Subject(s)
ARNTL Transcription Factors , Circadian Clocks , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Animals , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Circadian Clocks/genetics , Circadian Rhythm/genetics , Gene Expression , Gene Expression Regulation , Hepatocytes/metabolism , Insulin/metabolism , Liver/metabolism , Mice , Receptor, Insulin/genetics , Receptor, Insulin/metabolism
18.
Sci Adv ; 8(12): eabg9055, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35333579

ABSTRACT

Dysregulations of lipid metabolism in the liver may trigger steatosis progression, leading to potentially severe clinical consequences such as nonalcoholic fatty liver diseases (NAFLDs). Molecular mechanisms underlying liver lipogenesis are very complex and fine-tuned by chromatin dynamics and multiple key transcription factors. Here, we demonstrate that the nuclear factor HMGB1 acts as a strong repressor of liver lipogenesis. Mice with liver-specific Hmgb1 deficiency display exacerbated liver steatosis, while Hmgb1-overexpressing mice exhibited a protection from fatty liver progression when subjected to nutritional stress. Global transcriptome and functional analysis revealed that the deletion of Hmgb1 gene enhances LXRα and PPARγ activity. HMGB1 repression is not mediated through nucleosome landscape reorganization but rather via a preferential DNA occupation in a region carrying genes regulated by LXRα and PPARγ. Together, these findings suggest that hepatocellular HMGB1 protects from liver steatosis development. HMGB1 may constitute a new attractive option to therapeutically target the LXRα-PPARγ axis during NAFLD.

19.
Toxins (Basel) ; 14(2)2022 01 22.
Article in English | MEDLINE | ID: mdl-35202111

ABSTRACT

Fumonisin B1 (FB1) is a widespread mycotoxin produced by fungal Fusarium species-mainly in maize, one of the plants most commonly used for food and feed. Pigs and horses are the animal species most susceptible to this mycotoxin. FB1 exposure can cause highly diverse clinical symptoms, including hepatotoxicity, immunotoxicity, and intestinal barrier function disturbance. Inhibition of ceramide synthetase is a well-understood ubiquitous molecular mechanism of FB1 toxicity, but other more tissue-specific effects remain to be elucidated. To investigate the effects of FB1 in different exposed tissues, we cross-analyzed the transcriptomes of fours organs: liver, jejunum, jejunal Peyer's patches, and spleen. During a four-week study period, pigs were fed a control diet or a FB1-contaminated diet (10 mg/kg feed). In response to oral FB1 exposure, we observed common biological processes in the four organs, including predominant and recurrent processes (extracellular matrix organization, integrin activation, granulocyte chemotaxis, neutrophil migration, and lipid and sterol homeostasis), as well as more tissue-specific processes that appeared to be related to lipid outcomes (cell cycle regulation in jejunum, and gluconeogenesis in liver).


Subject(s)
Fumonisins/toxicity , Gene Expression Regulation/drug effects , Swine Diseases/chemically induced , Administration, Oral , Animals , Genome-Wide Association Study , Jejunum/drug effects , Jejunum/metabolism , Liver/drug effects , Liver/metabolism , Peyer's Patches/drug effects , Peyer's Patches/metabolism , Swine
20.
Antioxid Redox Signal ; 37(4-6): 349-369, 2022 08.
Article in English | MEDLINE | ID: mdl-35166124

ABSTRACT

Aims: Although prebiotics, probiotics, and fecal transplantation can alter the sensation of hunger and/or feeding behavior, the role of the constitutive gut microbiota in the short-term regulation of food intake during normal physiology is still unclear. Results: An antibiotic-induced microbiota depletion study was designed to compare feeding behavior in conventional and microbiota-depleted mice. Tissues were sampled to characterize the time profile of microbiota-derived signals in mice during consumption of either standard or high-fat food for 1 h. Pharmacological and genetic tools were used to evaluate the contribution of postprandial endotoxemia and inflammatory responses in the short-term regulation of food intake. We observed constitutive microbial and macronutrient-dependent control of food intake at the time scale of a meal; that is, within 1 h of food introduction. Specifically, microbiota depletion increased food intake, and the microbiota-derived anorectic effect became significant during the consumption of high-fat but not standard food. This anorectic effect correlated with a specific postprandial microbial metabolic signature, and did not require postprandial endotoxemia or an NOD-, LRR-, and Pyrin domain-containing protein 3-inflammasome-mediated inflammatory response. Innovation and Conclusion: These findings show that the gut microbiota controls host appetite at the time scale of a meal under normal physiology. Interestingly, a microbiota-derived anorectic effect develops specifically with a high-fat meal, indicating that gut microbiota activity is involved in the satietogenic properties of foods. Antioxid. Redox Signal. 37, 349-369.


Subject(s)
Appetite Depressants , Endotoxemia , Microbiota , Animals , Eating , Glucagon-Like Peptide 1 , Inflammation , Mice , Mice, Inbred NOD , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...