Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
bioRxiv ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38746338

ABSTRACT

Major Depressive Disorder (MDD) poses a significant public health challenge due to its high prevalence and the substantial burden it places on individuals and healthcare systems. Real-time functional magnetic resonance imaging neurofeedback (rtfMRI-NF) shows promise as a treatment for this disorder, although its mechanisms of action remain unclear. This study investigated whole-brain response patterns during rtfMRI-NF training to explain interindividual variability in clinical efficacy in MDD. We analyzed data from 95 participants (67 active, 28 control) with MDD from previous rtfMRI-NF studies designed to increase left amygdala activation through positive autobiographical memory recall. Significant symptom reduction was observed in the active group (t=-4.404, d=-0.704, p<0.001) but not in the control group (t=-1.609, d=-0.430, p=0.111). However, left amygdala activation did not account for the variability in clinical efficacy. To elucidate the brain training process underlying the clinical effect, we examined whole-brain activation patterns during two critical phases of the neurofeedback procedure: activation during the self-regulation period, and transient responses to feedback signal presentations. Using a systematic process involving feature selection, manifold extraction, and clustering with cross-validation, we identified two subtypes of regulation activation and three subtypes of brain responses to feedback signals. These subtypes were significantly associated with the clinical effect (regulation subtype: F=8.735, p=0.005; feedback response subtype: F=5.326, p=0.008; subtypes' interaction: F=3.471, p=0.039). Subtypes associated with significant symptom reduction were characterized by selective increases in control regions, including lateral prefrontal areas, and decreases in regions associated with self-referential thinking, such as default mode areas. These findings suggest that large-scale brain activity during training is more critical for clinical efficacy than the level of activation in the neurofeedback target region itself. Tailoring neurofeedback training to incorporate these patterns could significantly enhance its therapeutic efficacy.

2.
Article in English | MEDLINE | ID: mdl-38703822

ABSTRACT

BACKGROUND: Rumination is associated with greater cognitive dysfunction and treatment resistance in major depressive disorder (MDD), yet its underlying neural mechanisms are not well understood. Since rumination is characterized by difficulty in controlling negative thoughts, the present study investigated whether rumination is associated with aberrant cognitive control in the absence of negative emotional information. METHODS: Individuals with MDD (n=176) and healthy volunteers (n=52) completed the Stop Signal Task with varied stop signal difficulty during functional magnetic resonance imaging. In the task, a longer stop signal asynchrony made stopping difficult (Hard-stop) while a shorter stop signal asynchrony allowed more time for stopping (Easy-stop). RESULTS: In MDD participants, higher rumination intensity was associated with greater neural activity in response to difficult inhibitory control in the frontoparietal regions. Greater activation for difficult inhibitory control associated with rumination was also positively related to state fear. The imaging results provide compelling evidence for the neural basis of inhibitory control difficulties in MDD individuals with high rumination. CONCLUSIONS: The association between higher rumination intensity and greater neural activity in regions involved in difficult inhibitory control tasks may provide treatment targets for interventions aimed at improving inhibitory control and reducing rumination in this population.

3.
bioRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38562901

ABSTRACT

This study investigated the relationship between gut microbiota and neuropsychiatric disorders (NPDs), specifically anxiety disorder (ANXD) and/or major depressive disorder (MDD), as defined by DSM-IV or V criteria. The study also examined the influence of medication use, particularly antidepressants and/or anxiolytics, classified through the Anatomical Therapeutic Chemical (ATC) Classification System, on the gut microbiota. Both 16S rRNA gene amplicon sequencing and shallow shotgun sequencing were performed on DNA extracted from 666 fecal samples from the Tulsa-1000 and NeuroMAP CoBRE cohorts. The results highlight the significant influence of medication use; antidepressant use is associated with significant differences in gut microbiota beta diversity and has a larger effect size than NPD diagnosis. Next, specific microbes were associated with ANXD and MDD, highlighting their potential for non-pharmacological intervention. Finally, the study demonstrated the capability of Random Forest classifiers to predict diagnoses of NPD and medication use from microbial profiles, suggesting a promising direction for the use of gut microbiota as biomarkers for NPD. The findings suggest that future research on the gut microbiota's role in NPD and its interactions with pharmacological treatments are needed.

4.
Psychiatry Res Neuroimaging ; 340: 111803, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460393

ABSTRACT

Adverse childhood experiences (ACEs) negatively affect the function and structure of emotion brain circuits, increasing the risk of various psychiatric disorders. It is unclear if ACEs show disorder specificity with respect to their effects on brain structure. We aimed to investigate whether the structural brain effects of ACEs differ between patients with major depression (MDD) and borderline personality disorder (BPD). These disorders share many symptoms but likely have different etiologies. To achieve our goal, we obtained structural 3T-MRI images from 20 healthy controls (HC), 19 MDD patients, and 18 BPD patients, and measured cortical thickness and subcortical gray matter volumes. We utilized the Adverse Childhood Experiences (ACE) questionnaire to quantify self-reported exposure to childhood trauma. Our findings suggest that individuals with MDD exhibit a smaller cortical thickness when compared to those with BPD. However, ACEs showed a significantly affected relationship with cortical thickness in BPD but not in MDD. ACEs were found to be associated with thinning in cortical regions involved in emotional behavior in BPD, whereas HC showed an opposite association. Our results suggest a potential mechanism of ACE effects on psychopathology involving changes in brain structure. These findings highlight the importance of early detection and intervention strategies.


Subject(s)
Adverse Childhood Experiences , Borderline Personality Disorder , Depressive Disorder, Major , Humans , Depressive Disorder, Major/pathology , Depression , Brain , Personality
5.
J Psychiatr Res ; 168: 184-192, 2023 12.
Article in English | MEDLINE | ID: mdl-37913745

ABSTRACT

BACKGROUND: Repetitive negative thinking (RNT), often referred to as rumination in the mood disorders literature, is a symptom dimension associated with poor prognosis and suicide in major depressive disorder (MDD). Given the transdiagnostic nature of RNT, this study aimed to evaluate the hypothesis that neurobiological substrates of RNT in MDD may share the brain mechanisms underlying obsessions, particularly those involving cortico-striatal-thalamic-cortical (CSTC) circuits. METHODS: Thirty-nine individuals with MDD underwent RNT induction during fMRI. Trait-RNT was measured by the Ruminative Response Scale (RRS) and state-RNT was measured by a visual analogue scale. We employed a connectome-wide association analysis examining the association between RNT intensity with striatal and thalamic connectivity. RESULTS: A greater RRS score was associated with hyperconnectivity of the right mediodorsal thalamus with prefrontal cortex, including lateral orbitofrontal cortex, along with Wernicke's area and posterior default mode network nodes (t = 4.66-6.70). A greater state-RNT score was associated with hyperconnectivity of the right laterodorsal thalamus with bilateral primary sensory and motor cortices, supplementary motor area, and Broca's area (t = 4.51-6.57). Unexpectedly, there were no significant findings related to the striatum. CONCLUSIONS: The present results suggest RNT in MDD is subserved by abnormal connectivity between right thalamic nuclei and cortical regions involved in both visceral and higher order cognitive processing. Emerging deep-brain neuromodulation methods may be useful to establish causal relationships between dysfunction of right thalamic-cortical circuits and RNT in MDD.


Subject(s)
Depressive Disorder, Major , Pessimism , Humans , Brain , Prefrontal Cortex/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Magnetic Resonance Imaging
6.
bioRxiv ; 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37905149

ABSTRACT

Background: Sensitivity to threat with dysregulation of fear learning is thought to contribute to the development of psychiatric disorders, including anxiety disorders (AD) and major depressive disorder (MDD). However, fewer studies have examined fear learning in MDD than in AD. Nearly half of individuals with MDD have an AD and the comorbid diagnosis has worse outcomes. The current study used propensity matching to examine the hypothesis that AD+MDD shows greater neural correlates of fear learning than MDD, suggesting that the co-occurrence of AD+MDD is exemplified by exaggerated defense related processes. Methods: 195 individuals with MDD (N = 65) or AD+MDD (N=130) were recruited from the community and completed multi-level assessments, including a Pavlovian fear learning task during functional imaging. Results: MDD and AD+MDD showed significantly different patterns of activation for [CSplus-CSminus] in the medial amygdala (ηp2=0.009), anterior insula (ηp2=0.01), dorsolateral prefrontal cortex (ηp2=0.002), dorsal anterior cingulate cortex (ηp2=0.01), mid-cingulate cortex (ηp2=0.01) and posterior cingulate cortex (ηp2=0.02). These differences were driven by greater activation to the CS+ in late conditioning phases in ADD+MDD relative to MDD. Conclusions: AD+MDD showed a pattern of increased sustained activation in regions identified with fear learning. Effects were consistently driven by the threat condition, further suggesting fear signaling as the emergent target process. Differences emerged in regions associated with salience processing, attentional orienting/conflict, and self-relevant processing.These findings help to elucidate the fear signaling mechanisms involved in the pathophysiology of comorbid anxiety and depression, thereby highlighting promising treatment targets for this prevalent treatment group.

7.
Drug Alcohol Depend ; 252: 110945, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37717307

ABSTRACT

BACKGROUND: Substance use disorders (SUDs) represent a major public health risk. Yet, our understanding of the mechanisms that maintain these disorders remains incomplete. In a recent computational modeling study, we found initial evidence that SUDs are associated with slower learning rates from negative outcomes and less value-sensitive choice (low "action precision"), which could help explain continued substance use despite harmful consequences. METHODS: Here we aimed to replicate and extend these results in a pre-registered study with a new sample of 168 individuals with SUDs and 99 healthy comparisons (HCs). We performed the same computational modeling and group comparisons as in our prior report (doi: 10.1016/j.drugalcdep.2020.108208) to confirm previously observed effects. After completing all pre-registered replication analyses, we then combined the previous and current datasets (N = 468) to assess whether differences were transdiagnostic or driven by specific disorders. RESULTS: Replicating prior results, SUDs showed slower learning rates for negative outcomes in both Bayesian and frequentist analyses (partial η2=.02). Previously observed differences in action precision were not confirmed. Learning rates for positive outcomes were also similar between groups. Logistic regressions including all computational parameters as predictors in the combined datasets could differentiate several specific disorders from HCs, but could not differentiate most disorders from each other. CONCLUSIONS: These results provide robust evidence that individuals with SUDs adjust behavior more slowly in the face of negative outcomes than HCs. They also suggest this effect is common across several different SUDs. Future research should examine its neural basis and whether learning rates could represent a new treatment target or moderator of treatment outcome.


Subject(s)
Substance-Related Disorders , Humans , Bayes Theorem , Substance-Related Disorders/complications
8.
Psychiatry Res Neuroimaging ; 335: 111716, 2023 10.
Article in English | MEDLINE | ID: mdl-37717543

ABSTRACT

Neuroticism is a heritable trait and a risk factor for mental health due to its relevance to poor control of negative events. To examine the relationship between genetic propensity for neuroticism and control processing, we used the polygenic risk score (PRS) approach and a stop signal task during fMRI. We hypothesized that genetic propensity for neuroticism may moderate control processing as a function of control difficulty. PRSs for neuroticism were computed from a transdiagnostic group of individuals (n=406) who completed the stop signal task. The level of control difficulty was a function of the stop signal asynchrony: shorter asynchrony allows easier stopping whereas longer asynchrony makes stopping difficult. The relationship between PRS for neuroticism and neural activity for controlling responses was examined by the stop signal asynchrony. Although PRS for neuroticism did not relate to the overall inhibitory control, individuals with high PRS for neuroticism showed greater activity in left dorsal prefrontal cortex, middle temporal gyrus, and dorsal posterior cingulate cortex for difficult control. Thus, the genetic propensity for neuroticism affects neural processing in a difficult control context, which may help to explain why individuals with high levels of neuroticism exert poor control of negative events in difficult situations.


Subject(s)
Gyrus Cinguli , Prefrontal Cortex , Humans , Neuroticism , Gyrus Cinguli/physiology , Risk Factors
9.
J Affect Disord ; 340: 843-854, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37582464

ABSTRACT

Resting-state functional connectivity (RSFC) has been proposed as a potential indicator of repetitive negative thinking (RNT) in depression. However, identifying the specific functional process associated with RSFC alterations is challenging, and it remains unclear whether alterations in RSFC for depressed individuals are directly related to the RNT process or to individual characteristics distinct from the negative thinking process per se. To investigate the relationship between RSFC alterations and the RNT process in individuals with major depressive disorder (MDD), we compared RSFC with functional connectivity during an induced negative-thinking state (NTFC) in terms of their predictability of RNT traits and associated whole-brain connectivity patterns using connectome-based predictive modeling (CPM) and connectome-wide association (CWA) analyses. Thirty-six MDD participants and twenty-six healthy control participants underwent both resting state and induced negative thinking state fMRI scans. Both RSFC and NTFC distinguished between healthy and depressed individuals with CPM. However, trait RNT in depressed individuals, as measured by the Ruminative Responses Scale-Brooding subscale, was only predictable from NTFC, not from RSFC. CWA analysis revealed that negative thinking in depression was associated with higher functional connectivity between the default mode and executive control regions, which was not observed in RSFC. These findings suggest that RNT in depression involves an active mental process encompassing multiple brain regions across functional networks, which is not represented in the resting state. Although RSFC indicates brain functional alterations in MDD, they may not directly reflect the negative thinking process.


Subject(s)
Connectome , Depressive Disorder, Major , Pessimism , Humans , Depressive Disorder, Major/diagnostic imaging , Depression/diagnostic imaging , Magnetic Resonance Imaging , Executive Function
10.
Dev World Bioeth ; 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37436004

ABSTRACT

As neuroethics continues to grow as an established discipline, it has been charged with not being sufficiently sensitive to the way in which the identification, conceptualization, and management of the ethical issues raised by neuroscience and its applications are shaped by local systems of knowledge and structures. Recently there have been calls for explicit recognition of the role played by local cultural contexts and for the development of cross-cultural methodologies that can facilitate meaningful cultural engagement. In this article, we attempt to fill this perceived gap by providing a culturally situated analysis of the practice of electroconvulsive therapy (ECT) in Argentina. ECT was introduced as a psychiatric treatment in Argentina in the 1930s but it is largely underutilized. While the use of ECT remains low in several countries, what makes the Argentinian case interesting is that the executive branch of government has taken a stance regarding both the scientific and moral appropriateness of ECT, recommending its prohibition. Here, we begin with a recent controversy over the use of ECT in Argentina and explain the legal recommendation to ban its application. Next, we offer an overview of some of the salient aspect of the international and local discussions on ECT. We argue that the governmental recommendation to ban the procedure should be rethought. While acknowledging the role that contexts and local conditions play in shaping the identification and assessment of the relevant ethical issues, we caution against using contextual and cultural considerations to avoid a necessary ethical debate on controversial issues.

11.
Proc Natl Acad Sci U S A ; 120(20): e2218782120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155867

ABSTRACT

Gender inequality across the world has been associated with a higher risk to mental health problems and lower academic achievement in women compared to men. We also know that the brain is shaped by nurturing and adverse socio-environmental experiences. Therefore, unequal exposure to harsher conditions for women compared to men in gender-unequal countries might be reflected in differences in their brain structure, and this could be the neural mechanism partly explaining women's worse outcomes in gender-unequal countries. We examined this through a random-effects meta-analysis on cortical thickness and surface area differences between adult healthy men and women, including a meta-regression in which country-level gender inequality acted as an explanatory variable for the observed differences. A total of 139 samples from 29 different countries, totaling 7,876 MRI scans, were included. Thickness of the right hemisphere, and particularly the right caudal anterior cingulate, right medial orbitofrontal, and left lateral occipital cortex, presented no differences or even thicker regional cortices in women compared to men in gender-equal countries, reversing to thinner cortices in countries with greater gender inequality. These results point to the potentially hazardous effect of gender inequality on women's brains and provide initial evidence for neuroscience-informed policies for gender equality.


Subject(s)
Brain , Gender Equity , Male , Adult , Humans , Female , Brain/diagnostic imaging , Sex Factors
12.
J Psychiatr Res ; 162: 207-213, 2023 06.
Article in English | MEDLINE | ID: mdl-37178517

ABSTRACT

BACKGROUND: Repetitive negative thinking (RNT) is a symptom that can negatively impact the treatment and course of common psychiatric disorders such as depression and anxiety. We aimed to characterize behavioral and genetic correlates of RNT to infer potential contributors to its genesis and maintenance. METHODS: We applied a machine learning (ML) ensemble method to define the contribution of fear, interoceptive, reward, and cognitive variables to RNT, along with polygenic risk scores (PRS) for neuroticism, obsessive compulsive disorder (OCD), worry, insomnia, and headaches. We used the PRS and 20 principal components of the behavioral and cognitive variables to predict intensity of RNT. We employed the Tulsa-1000 study, a large database of deeply phenotyped individuals recruited between 2015 and 2018. RESULTS: PRS for neuroticism was the main predictor of RNT intensity (R2=0.027,p<0.001). Behavioral variables indicative of faulty fear learning and processing, as well as aberrant interoceptive aversiveness, were significant contributors to RNT severity. Unexpectedly, we observed no contribution of reward behavior and diverse cognitive function variables. LIMITATIONS: This study is an exploratory approach that must be validated with a second, independent cohort. Furthermore, this is an association study, limiting causal inference. CONCLUSIONS: RNT is highly determined by genetic risk for neuroticism, a behavioral construct that confers risk to a variety of internalizing disorders, and by emotional processing and learning features, including interoceptive aversiveness. These results suggest that targeting emotional and interoceptive processing areas, which involve central autonomic network structures, could be useful in the modulation of RNT intensity.


Subject(s)
Pessimism , Humans , Pessimism/psychology , Thinking , Surveys and Questionnaires , Anxiety Disorders/psychology , Anxiety/psychology
13.
Clin Interv Aging ; 18: 771-781, 2023.
Article in English | MEDLINE | ID: mdl-37200894

ABSTRACT

Purpose: The objective of the present study was to assess sleep-wake differences of autonomic activity in patients with mild cognitive impairment (MCI) compared to control subjects. As a post-hoc objective, we sought to evaluate the mediating effect of melatonin on this association. Patients and Methods: A total of 22 MCI patients (13 under melatonin treatment) and 12 control subjects were included in this study. Sleep-wake periods were identified by actigraphy and 24hr-heart rate variability measures were obtained to study sleep-wake autonomic activity. Results: MCI patients did not show any significant differences in sleep-wake autonomic activity when compared to control subjects. Post-hoc analyses revealed that MCI patients not taking melatonin displayed lower parasympathetic sleep-wake amplitude than controls not taking melatonin (RMSSD -7 ± 1 vs 4 ± 4, p = 0.004). In addition, we observed that melatonin treatment was associated with greater parasympathetic activity during sleep (VLF 15.5 ± 0.1 vs 15.1 ± 0.1, p = 0.010) and in sleep-wake differences in MCI patients (VLF 0.5 ± 0.1 vs 0.2 ± 0.0, p = 0.004). Conclusion: These preliminary findings hint at a possible sleep-related parasympathetic vulnerability in patients at prodromal stages of dementia as well as a potential protective effect of exogenous melatonin in this population.


Subject(s)
Cognitive Dysfunction , Melatonin , Sleep Wake Disorders , Humans , Melatonin/pharmacology , Melatonin/therapeutic use , Sleep Wake Disorders/drug therapy , Sleep/physiology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/complications , Actigraphy , Circadian Rhythm/physiology
14.
medRxiv ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37066197

ABSTRACT

Background: Substance use disorders (SUDs) represent a major public health risk. Yet, our understanding of the mechanisms that maintain these disorders remains incomplete. In a recent computational modeling study, we found initial evidence that SUDs are associated with slower learning rates from negative outcomes and less value-sensitive choice (low "action precision"), which could help explain continued substance use despite harmful consequences. Methods: Here we aimed to replicate and extend these results in a pre-registered study with a new sample of 168 individuals with SUDs and 99 healthy comparisons (HCs). We performed the same computational modeling and group comparisons as in our prior report (doi: 10.1016/j.drugalcdep.2020.108208) to confirm previously observed effects. After completing all pre-registered replication analyses, we then combined the previous and current datasets (N = 468) to assess whether differences were transdiagnostic or driven by specific disorders. Results: Replicating prior results, SUDs showed slower learning rates for negative outcomes in both Bayesian and frequentist analyses (η 2 =.02). Previously observed differences in action precision were not confirmed. Logistic regressions including all computational parameters as predictors in the combined datasets could differentiate several specific disorders from HCs, but could not differentiate most disorders from each other. Conclusions: These results provide robust evidence that individuals with SUDs have more difficulty adjusting behavior in the face of negative outcomes than HCs. They also suggest this effect is common across several different SUDs. Future research should examine its neural basis and whether learning rates could represent a new treatment target or moderator of treatment outcome.

15.
Article in English | MEDLINE | ID: mdl-36969502

ABSTRACT

Major Depressive Disorder (MDD) and Obsessive-Compulsive Disorder (OCD) are common and potentially incapacitating conditions. Even when recognized and adequately treated, in over a third of patients with these conditions the response to first-line pharmacological and psychotherapeutic measures is not satisfactory. After more assertive measures including pharmacological augmentation (and in the case of depression, transcranial magnetic stimulation, electroconvulsive therapy, or treatment with ketamine or esketamine), a significant number of individuals remain severely symptomatic. In these persons, different ablation and deep-brain stimulation (DBS) psychosurgical techniques have been employed. However, apart from the cost and potential morbidity associated with surgery, on average only about half of patients show adequate response, which limits the widespread application of these potentially life-saving interventions. Possible reasons are considered for the wide variation in outcomes across different series of patients with MDD or OCD exposed to ablative or DBS psychosurgery, including interindividual anatomical and etiological variability. Low-intensity focused ultrasound (LIFU) is an emerging technique that holds promise in its ability to achieve anatomically circumscribed, noninvasive, and reversible neuromodulation of deep brain structures. A possible role for LIFU in the personalized presurgical definition of neuromodulation targets in the individual patient is discussed, including a proposed roadmap for clinical trials addressed at testing whether this technique can help to improve psychosurgical outcomes.

16.
bioRxiv ; 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-36993382

ABSTRACT

Resting-state functional connectivity (RSFC) has been proposed as a potential indicator of repetitive negative thinking (RNT) in depression. However, identifying the specific functional process associated with RSFC alterations is challenging, and it remains unclear whether alterations in RSFC for depressed individuals are directly related to the RNT process or to individual characteristics distinct from the negative thinking process per se. To investigate the relationship between RSFC alterations and the RNT process in individuals with major depressive disorder (MDD), we compared RSFC with functional connectivity during an induced negative-thinking state (NTFC) in terms of their predictability of RNT traits and associated whole-brain connectivity patterns using connectome-based predictive modeling (CPM) and connectome-wide association (CWA) analyses. Thirty-six MDD participants and twenty-six healthy control participants underwent both resting state and induced negative thinking state fMRI scans. Both RSFC and NTFC distinguished between healthy and depressed individuals with CPM. However, trait RNT in depressed individuals, as measured by the Ruminative Responses Scale-Brooding subscale, was only predictable from NTFC, not from RSFC. CWA analysis revealed that negative thinking in depression was associated with higher functional connectivity between the default mode and executive control regions, which was not observed in RSFC. These findings suggest that RNT in depression involves an active mental process encompassing multiple brain regions across functional networks, which is not represented in the resting state. Although RSFC indicates brain functional alterations in MDD, they may not directly reflect the negative thinking process.

17.
Biol Psychiatry ; 94(8): 661-671, 2023 10 15.
Article in English | MEDLINE | ID: mdl-36965550

ABSTRACT

BACKGROUND: Repetitive negative thinking (RNT) is a frequent symptom of major depressive disorder (MDD) that is associated with poor outcomes and treatment resistance. While most studies on RNT have focused on structural and functional characteristics of gray matter, this study aimed to examine the association between white matter (WM) tracts and interindividual variability in RNT. METHODS: A probabilistic tractography approach was used to characterize differences in the size and anatomical trajectory of WM fibers traversing psychosurgery targets historically useful in the treatment of MDD (anterior capsulotomy, anterior cingulotomy, and subcaudate tractotomy) in patients with MDD and low (n = 53) or high (n = 52) RNT, and healthy control subjects (n = 54). MDD samples were propensity matched on depression and anxiety severity and demographics. RESULTS: WM tracts traversing left hemisphere targets and reaching the ventral anterior body of the corpus callosum (thus extending to contralateral regions) were larger in the high-RNT MDD group compared with low-RNT (effect size D = 0.27, p = .042) and healthy control (D = 0.23, p = .02) groups. MDD was associated with greater size of tracts that converge onto the right medial orbitofrontal cortex regardless of RNT intensity. Other RNT-nonspecific findings in MDD involved tracts reaching the left primary motor and right primary somatosensory cortices. CONCLUSIONS: This study provides the first evidence to our knowledge that WM connectivity patterns, which could become targets of intervention, differ between high- and low-RNT participants with MDD. These WM differences extend to circuits that are not specific to RNT, possibly subserving reward mechanisms and psychomotor activity.


Subject(s)
Depressive Disorder, Major , Pessimism , White Matter , Humans , White Matter/diagnostic imaging , Depressive Disorder, Major/surgery , Depression , Anxiety
18.
Schizophr Res ; 254: 42-53, 2023 04.
Article in English | MEDLINE | ID: mdl-36801513

ABSTRACT

Recent functional imaging studies in schizophrenia consistently report a disruption of brain connectivity. However, most of these studies analyze the brain connectivity during resting state. Since psychological stress is a major factor for the emergence of psychotic symptoms, we sought to characterize the brain connectivity reconfiguration induced by stress in schizophrenia. We tested the hypothesis that an alteration of the brain's integration-segregation dynamic could be the result of patients with schizophrenia facing psychological stress. To this end, we studied the modular organization and the reconfiguration of networks induced by a stress paradigm in forty subjects (twenty patients and twenty controls), thus analyzing the dynamics of the brain in terms of integration and segregation processes by using 3T-fMRI. Patients with schizophrenia did not show statistically significant differences during the control task compared with controls, but they showed an abnormal community structure during stress condition and an under-connected reconfiguration network with a reduction of hub nodes, suggesting a deficit of integration dynamic with a greater compromise of the right hemisphere. These results provide evidence that schizophrenia has a normal response to undemanding stimuli but shows a disruption of brain functional connectivity between key regions involved in stress response, potentially leading to altered functional brain dynamics by reducing integration capacity and showing deficits recruiting right hemisphere regions. This could in turn underlie the hyper-sensitivity to stress characteristic of schizophrenia.


Subject(s)
Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Nerve Net , Brain , Brain Mapping , Magnetic Resonance Imaging/methods , Stress, Psychological/diagnostic imaging , Neural Pathways/diagnostic imaging
19.
Psychother Psychosom ; 92(2): 87-100, 2023.
Article in English | MEDLINE | ID: mdl-36630946

ABSTRACT

INTRODUCTION: Repetitive negative thinking (RNT) is a cognitive process focusing on self-relevant and negative experiences, leading to a poor prognosis of major depressive disorder (MDD). We previously identified that connectivity between the precuneus/posterior cingulate cortex (PCC) and right temporoparietal junction (rTPJ) was positively correlated with levels of RNT. OBJECTIVE: In this double-blind, randomized, sham-controlled, proof-of-concept trial, we employed real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) to delineate the neural processes that may be causally linked to RNT and could potentially become treatment targets for MDD. METHODS: MDD-affected individuals were assigned to either active (n = 20) or sham feedback group (n = 19). RNT was measured by the Ruminative Response Scale-brooding subscale (RRS-B) before and 1 week after the intervention. RESULTS: Individuals in the active but not in the sham group showed a significant reduction in the RRS-B; however, a greater reduction in the PCC-rTPJ connectivity was unrelated to a greater reduction in the RRS-B. Exploratory analyses revealed that a greater reduction in the retrosplenial cortex (RSC)-rTPJ connectivity yielded a more pronounced reduction in the RRS-B in the active but not in the sham group. CONCLUSIONS: RtfMRI-nf was effective in reducing RNT. Considering the underlying mechanism of rtfMIR-nf, the RSC and rTPJ could be part of a network (i.e., default mode network) that might collectively affect the intensity of RNT. Understanding the relationship between the functional organization of targeted neural changes and clinical metrics, such as RNT, has the potential to guide the development of mechanism-based treatment of MDD.


Subject(s)
Depressive Disorder, Major , Neurofeedback , Pessimism , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/therapy , Neurofeedback/methods , Depression , Magnetic Resonance Imaging/methods
20.
Biol Psychiatry ; 93(2): 167-177, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36085080

ABSTRACT

BACKGROUND: Impaired emotion processing constitutes a key dimension of schizophrenia and a possible endophenotype of this illness. Empirical studies consistently report poorer emotion recognition performance in patients with schizophrenia as well as in individuals at enhanced risk of schizophrenia. Functional magnetic resonance imaging studies also report consistent patterns of abnormal brain activation in response to emotional stimuli in patients, in particular, decreased amygdala activation. In contrast, brain-level abnormalities in at-risk individuals are more elusive. We address this gap using an image-based meta-analysis of the functional magnetic resonance imaging literature. METHODS: Functional magnetic resonance imaging studies investigating brain responses to negative emotional stimuli and reporting a comparison between at-risk individuals and healthy control subjects were identified. Frequentist and Bayesian voxelwise meta-analyses were performed separately, by implementing a random-effect model with unthresholded group-level T-maps from individual studies as input. RESULTS: In total, 17 studies with a cumulative total of 677 at-risk individuals and 805 healthy control subjects were included. Frequentist analyses did not reveal significant differences between at-risk individuals and healthy control subjects. Similar results were observed with Bayesian analyses, which provided strong evidence for the absence of meaningful brain activation differences across the entire brain. Region of interest analyses specifically focusing on the amygdala confirmed the lack of group differences in this region. CONCLUSIONS: These results suggest that brain activation patterns in response to emotional stimuli are unlikely to constitute a reliable endophenotype of schizophrenia. We suggest that future studies instead focus on impaired functional connectivity as an alternative and promising endophenotype.


Subject(s)
Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Endophenotypes , Bayes Theorem , Emotions/physiology , Brain/diagnostic imaging , Magnetic Resonance Imaging , Brain Mapping , Facial Expression
SELECTION OF CITATIONS
SEARCH DETAIL
...