Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38734386

ABSTRACT

BACKGROUND: The contribution of Staphylococcus aureus (S. aureus) to the exacerbation of atopic dermatitis (AD) is widely documented, but its role as a primary trigger of AD skin symptoms remains poorly explored. OBJECTIVE: To reappraise the main bacterial factors and underlying immune mechanisms by which S. aureus triggers AD-like inflammation. METHODS: We capitalized on a pre-clinical model, in which different clinical isolates were applied in the absence of any prior experimental skin injury. RESULTS: We report that the development of S. aureus-induced dermatitis depended on the nature of the S. aureus strain, its viability, the concentration of the applied bacterial suspension, the production of secreted and non-secreted factors, as well as the activation of accessory gene regulatory quorum sensing system. In addition, the rising dermatitis, which exhibited the well-documented AD cytokine signature, was significantly inhibited in inflammasome adaptor protein ASC- and monocyte/macrophage-deficient animals, but not in T- and B-cell-deficient mice, suggesting a major role for the innate response in the induction of skin inflammation. However, bacterial exposure generated a robust adaptive immune response against S. aureus, and an accumulation of S. aureus-specific γδ and CD4+ tissue resident memory T (Trm) cells at the site of previous dermatitis. The latter both contributed to worsen the flares of AD-like dermatitis upon new bacteria exposures, but also, protected the mice from persistent bacterial colonization. CONCLUSION: These data highlight the induction of unique AD-like inflammation, with the generation of pro-inflammatory but protective Trm cells in a context of natural exposure to pathogenic S. aureus strains.

2.
Allergy ; 79(1): 52-64, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37539746

ABSTRACT

BACKGROUND: Tissue-resident memory T (TRM ) cells are detrimental in allergic contact dermatitis (ACD), in which they contribute to the chronicity and severity of the disease. METHODS: We assessed the impact of a standard topical corticosteroid (TCS) treatment, triamcinolone acetonide (TA), on the formation, maintenance and reactivation of epidermal TRM cells in a preclinical model of ACD to 2,4-dinitrofluorobenzene. TA 0.01% was applied at different time points of ACD response and we monitored skin inflammation and tracked CD8+ CD69+ CD103+ TRM by flow cytometry and RNA sequencing. RESULTS: The impact of TA on TRM formation depended on treatment regimen: (i) in a preventive mode, that is, in sensitized mice before challenge, TA transiently inhibited the infiltration of effector T cells and the accumulation of TRM upon hapten challenge. In contrast, (ii) in a curative mode, that is, at the peak of the ACD response, TA blocked skin inflammation but failed to prevent the formation of TRM . Finally, (iii) in a proactive mode, that is, on previous eczema lesions, TA had no effect on the survival of skin TRM , but transiently inhibited their reactivation program upon allergen reexposure. Indeed, specific TRM progressively regained proliferative functions upon TA discontinuation and expanded in the tissue, leading to exaggerated iterative responses. Interestingly, TRM re-expansion correlated with the decreased clearance of hapten moieties from the skin induced by repeated TA applications. CONCLUSIONS: Our results demonstrate that TCS successfully treat ACD inflammation, but are mostly ineffective in impeding the formation and expansion of allergen-specific TRM , which certainly restricts the induction of lasting tolerance in patients with chronic dermatitis.


Subject(s)
Dermatitis, Allergic Contact , Dermatitis, Atopic , Dermatologic Agents , Humans , Mice , Animals , Memory T Cells , CD8-Positive T-Lymphocytes , Skin/pathology , Dermatitis, Allergic Contact/drug therapy , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Allergens , Inflammation/drug therapy , Inflammation/pathology , Haptens , Adrenal Cortex Hormones , Immunologic Memory
3.
Front Cardiovasc Med ; 10: 1094786, 2023.
Article in English | MEDLINE | ID: mdl-37215546

ABSTRACT

Coronavirus disease (COVID)-19 is characterised in particular by vascular inflammation with platelet activation and endothelial dysfunction. During the pandemic, therapeutic plasma exchange (TPE) was used to reduce the cytokine storm in the circulation and delay or prevent ICU admissions. This procedure consists in replacing the inflammatory plasma by fresh frozen plasma from healthy donors and is often used to remove pathogenic molecules from plasma (autoantibodies, immune complexes, toxins, etc.). This study uses an in vitro model of platelet-endothelial cell interactions to assess changes in these interactions by plasma from COVID-19 patients and to determine the extent to which TPE reduces such changes. We noted that exposure of an endothelial monolayer to plasmas from COVID-19 patients post-TPE induced less endothelial permeability compared to COVID-19 control plasmas. Yet, when endothelial cells were co-cultured with healthy platelets and exposed to the plasma, the beneficial effect of TPE on endothelial permeability was somewhat reduced. This was linked to platelet and endothelial phenotypical activation but not with inflammatory molecule secretion. Our work shows that, in parallel to the beneficial removal of inflammatory factors from the circulation, TPE triggers cellular activation which may partly explain the reduction in efficacy in terms of endothelial dysfunction. These findings provide new insights for improving the efficacy of TPE using supporting treatments targeting platelet activation, for instance.

4.
J Allergy Clin Immunol ; 150(5): 1194-1208, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35779666

ABSTRACT

BACKGROUND: Epicutaneous immunotherapy (EPIT) protocols have recently been developed to restore tolerance in patients with food allergy. The mechanisms by which EPIT protocols promote desensitization rely on a profound immune deviation of pathogenic T- and B-cell responses. OBJECTIVE: To date, little is known about the contribution of skin dendritic cells (skDCs) to T-cell remodeling and EPIT efficacy. METHODS: We capitalized on a preclinical model of food allergy to ovalbumin (OVA) to characterize the phenotype and functions of OVA+ skDCs throughout the course of EPIT. RESULTS: Our results showed that both Langerhans cells and dermal conventional cDC1 and cDC2 subsets retained their ability to capture OVA in the skin and to migrate toward the skin-draining lymph nodes during EPIT. However, their activation/maturation status was significantly impaired, as evidenced by the gradual and selective reduction of CD86, CD40, and OVA protein expression in respective subsets. Phenotypic changes during EPIT were also characterized by a progressive diversification of single-cell gene signatures within each DC subset. Interestingly, we observed that OVA+ Langerhans cells progressively lost their capacity to prime CD4+ TEFF cells, but gained regulatory T-cell stimulatory properties. In contrast, cDC1 were inefficient in priming CD4+ TEFF cells or in reactivating TMEM cells in vitro, whereas cDC2 retained moderate stimulatory properties, and progressively biased type 2 immunity toward type 1 and type 17 responses. CONCLUSIONS: Our results therefore emphasize that the acquisition of distinct phenotypic and functional specializations by skDCs during EPIT is at the cornerstone of the desensitization process.


Subject(s)
Food Hypersensitivity , Langerhans Cells , Humans , Desensitization, Immunologic/methods , Ovalbumin , T-Lymphocytes, Regulatory , Allergens
5.
Eur J Immunol ; 50(5): 725-735, 2020 05.
Article in English | MEDLINE | ID: mdl-32012249

ABSTRACT

Extracorporeal photochemotherapy (ECP) that takes advantage of the immunomodulatory effects of UV light has been extensively used for many years for the treatment of several T cell-mediated diseases, including graft-versus-host disease (GvHD) and systemic scleroderma. Immune mechanisms that lead to the establishment of T cell tolerance in ECP-treated patients remain poorly known. In this study, we have tested the effect of UV/psoralen-treated BM-derived dendritic cells, referred to as ECP-BMDCs on the outcome of an antigen-specific T cell-mediated reaction, that is, contact hypersensitivity (CHS), which is mediated by CD8+ effector T cells (CD8+ Teff ). The intravenous (i.v.) injection of antigen-pulsed ECP-BMDCs in recipient C57BL/6 mice induced specific CD8+ T cells endowed with immunomodulatory properties (referred to as CD8+ TECP ), which prevented the priming of CD8+ Teff and the development of CHS, independently of conventional CD4+ regulatory T cells. CD8+ TECP mediated tolerance by inhibiting the migration and functions of skin DC and subsequently the priming of CD8+ Teff . CD8+ TECP displayed none of the phenotypes of the usual CD8+ T regulatory cells described so far. Our results reveal an underestimated participation of CD8+ T cells to ECP-induced immunomodulation that could explain the therapeutic effects of ECP in T cell-mediated diseases.


Subject(s)
Dendritic Cells/immunology , Dermatitis, Contact/therapy , Immune Tolerance , Immunomodulation/radiation effects , T-Lymphocytes, Cytotoxic/radiation effects , T-Lymphocytes, Regulatory/radiation effects , Allergens/administration & dosage , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , Dendritic Cells/cytology , Dendritic Cells/transplantation , Dermatitis, Contact/immunology , Dermatitis, Contact/physiopathology , Dinitrofluorobenzene/administration & dosage , Disease Models, Animal , Female , Ficusin/administration & dosage , Humans , Mice, Inbred C57BL , Mice, Transgenic , Photopheresis/methods , Photosensitizing Agents/administration & dosage , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Ultraviolet Rays
6.
Hepatology ; 56(1): 39-48, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22290760

ABSTRACT

UNLABELLED: Hepatitis C virus (HCV) particles associate viral and lipoprotein moieties to form hybrid lipoviral particles (LVPs). Cell culture-produced HCV (HCVcc) and ex vivo-characterized LVPs primarily differ by their apolipoprotein (apo) B content, which is low for HCVcc, but high for LVPs. Recombinant nucleocapsid-free subviral LVPs are assembled and secreted by apoB-producing cell lines. To determine whether such subviral particles circulate in HCV-infected individuals, LVPs complexed with immunoglobulin were precipitated with protein A from low-density plasma fractions of 36 hepatitis C patients, and their lipid content, apolipoprotein profile, and viral composition were determined. HCV RNA in LVPs was quantified and molar ratios of apoB and HCV genome copy number were calculated. LVPs lipidome from four patients was determined via electrospray ionization/tandem mass spectrometry. Protein A-purified LVPs contained at least the envelope glycoprotein E2 and E2-specific antibodies. LVPs were present in every patient and were characterized by high lipid content, presence of apolipoproteins characteristic of triglyceride-rich lipoproteins (TRLs), HCV RNA, and viral glycoprotein. Importantly, save for four patients, LVPs fractions contained large amounts of apoB, with on average more than 1 × 10(6) apoB molecules per HCV RNA genome. Because there is one apoB molecule per TRL, this ratio suggested that most LVPs are nucleocapsid-free, envelope glycoprotein-containing subviral particles. LVPs and TRLs had similar composition of triacylglycerol and phospholipid classes. CONCLUSION: LVPs are a mixed population of particles, comprising predominantly subviral particles that represent a distinct class of modified lipoproteins within the TRL family.


Subject(s)
Apolipoproteins B/metabolism , Hepacivirus/metabolism , Hepatitis C, Chronic/blood , Lipoproteins, HDL/metabolism , Nucleocapsid Proteins/metabolism , Adult , Aged , Blotting, Western , Cohort Studies , Female , Hepatitis C, Chronic/physiopathology , Humans , Lipoproteins, IDL/metabolism , Lipoproteins, LDL/metabolism , Male , Middle Aged , Nucleocapsid Proteins/analysis , Prognosis , RNA, Viral/analysis , Regression Analysis , Sensitivity and Specificity , Viral Envelope Proteins/metabolism , Viral Load
7.
Immunobiology ; 217(1): 91-9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21856032

ABSTRACT

Lipoproteins are both lipid carriers in the blood and regulators of essential biological processes. Several studies demonstrated that lipoproteins modified during pathological conditions could alter dendritic cell (DC) maturation. Here the immune function of non-pathological lipoproteins is addressed by analysing their impact on human DC maturation triggered by TLR ligands. Upon TLR4 stimulation, low- and high-density lipoproteins (LDL and HDL) strongly inhibited the ability of DC to induce a Th1 response of T cells, characterized by high levels of IFNγ secretion, whereas the effect of very low-density lipoprotein was subject to variations. HDL also inhibited the Th1 function of DC stimulated by TLR1/2 and TLR2/6 ligands. The phospholipid fraction from HDL retained the inhibitory activity of the lipoprotein. We identified the 1-palmitoyl-2-linoleyl-phosphatidylcholine (PLPC) as one active phospholipid that inhibited the Th1 function of mature DCs whereas the dipalmitoyl-phosphatidylcholine had no significant effect. The treatment of DC by PLPC, 24h before TLR4 stimulation, resulted in reduced activation of NF-κB. This study shows that some HDL phospholipids have a direct immunoregulatory function, by modulating DC ability to activate a Th1 response of T cells.


Subject(s)
Dendritic Cells/drug effects , Immunity, Innate , Lipoproteins, HDL/pharmacology , Lipoproteins, LDL/pharmacology , Lipoproteins, VLDL/pharmacology , Monocytes/drug effects , Th1 Cells/drug effects , Cell Differentiation , Cells, Cultured , Dendritic Cells/cytology , Dendritic Cells/immunology , Electrophoretic Mobility Shift Assay , Humans , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Lipopolysaccharides/pharmacology , Lipoproteins, HDL/immunology , Lipoproteins, LDL/immunology , Lipoproteins, VLDL/immunology , Monocytes/cytology , Monocytes/immunology , NF-kappa B/immunology , NF-kappa B/metabolism , Phosphatidylcholines/pharmacology , Signal Transduction/immunology , Th1 Cells/cytology , Th1 Cells/immunology , Toll-Like Receptor 2/immunology , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/immunology , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 6/immunology , Toll-Like Receptor 6/metabolism
8.
Clin Vaccine Immunol ; 17(3): 429-38, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20071492

ABSTRACT

Improving vaccine immunogenicity by developing new adjuvant formulations has long been a goal of vaccinologists. It has previously been shown that a natural mix of lysophosphatidylcholine (LPC) from chicken eggs promotes mature dendritic cell (DC) generation in vitro and primes antigen-specific immune responses in mice. In the present study, we dissected the adjuvant potentials of five individual LPC components found in the chicken egg mixture. In vitro analyses of the impact of the individual components on the maturation of human DCs were performed by means of phenotypic analysis, chemokine secretion analysis, and analysis of the ability of mature DC to stimulate T lymphocytes. Two components, C16:0-LPC and C18:0-LPC, were identified to be capable of the upregulation of expression of CD86, HLA-DR, and CD40 on in vitro-cultured monocyte-derived DCs from healthy donors. Both induced the release of chemokines to high concentrations (macrophage inflammatory protein 1, monocyte chemoattractant protein 1) or moderate concentrations (interleukin-8 [IL-8], gamma interferon-inducible protein 10). In addition, C16:0-LPC engaged naïve T cells to produce gamma interferon. This suggests that C16:0-LPC and C18:0-LPC have the capacity to promote, at least in vitro, a Th1-oriented response. The intravenous injection of C16:0-LPC or C18:0-LPC into mice resulted in the detectable secretion of IL-6 and IL-5 in sera. Both LPC components were tested for their capacities to act as adjuvants for two selected immunogens: the hepatitis B virus surface antigen and the hepatitis C virus NS3 helicase. The secretion of specific IgG1 was observed with either or both C16:0-LPC and C18:0-LPC, depending on the immunogen tested, and was observed at an efficiency comparable to that of alum. These data identify C16:0-LPC and C18:0-LPC as the active components of the LPC natural mixture. Although discrepancies between the results of the in vitro and in vivo analyses existed, studies with animals suggest that these components can trigger significant and specific humoral-mediated immunity.


Subject(s)
Adjuvants, Immunologic/pharmacology , Dendritic Cells/immunology , Lysophosphatidylcholines/immunology , Vaccines/immunology , Animals , Chemokines/immunology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Lymphocyte Activation/immunology , Lymphocyte Culture Test, Mixed , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes/immunology
9.
PLoS One ; 3(5): e2260, 2008 May 28.
Article in English | MEDLINE | ID: mdl-18509450

ABSTRACT

BACKGROUND: Lack of protective antibodies and inefficient cytotoxic responses are characteristics of chronic hepatitis C infection. A defect in dendritic cell (DC) function has thus been suspected, but this remains a controversial issue. METHODS AND FINDINGS: Here we show that monocyte-derived DC (MoDC) from chronically-infected patients can mature in response to TLR1/2, TLR2/6 or TLR3 ligands. In contrast, when stimulated with the TLR4 ligand LPS, MoDC from patients show a profound defect in inducing IFNgamma secretion by allogeneic T cells. This defect is not due to defective phenotypic maturation or to the presence of HCV-RNA in DC or monocytes but is correlated to reduced IL-12 secretion by DC. Restoration of DC ability to stimulate IFNgamma secretion can be obtained by blocking MEK activation in DC, indicating that MEK/ERK pathway is involved in the Th1 defect of MoDC. Monocytes from HCV patients present increased spontaneous secretion of cytokines and chemokines, especially MIP-1beta. Addition of MIP-1beta on healthy monocytes during differentiation results in DC that have Th1 defect characteristic of MoDC from HCV patients, suggesting that MIP-1beta secretion by HCV monocytes participates in the Th1 defect of DC. CONCLUSIONS: Our data indicate that monocytes from HCV patients are activated in vivo. This interferes with their differentiation into DC, leading to deficient TLR4 signaling in these cells that are enable to induce a Th1 response. This specific defect is linked to the activation of the MEK/ERK pathway.


Subject(s)
Dendritic Cells/immunology , Hepatitis C, Chronic/immunology , Monocytes/immunology , Th1 Cells/immunology , Toll-Like Receptor 4/physiology , Hepacivirus/genetics , Hepacivirus/isolation & purification , Humans , Lymphocyte Culture Test, Mixed , RNA, Viral/blood , Viral Load
10.
Vaccine ; 24(9): 1254-63, 2006 Feb 27.
Article in English | MEDLINE | ID: mdl-16229929

ABSTRACT

The discovery of new adjuvants that can stimulate the immune response to protein antigens is a major issue for the development of subunit vaccines. Lipoprotein oxidation occurring during the acute phase response (APR) to aggression of the organism, provides signals of danger that are detected by dendritic cells (DC). Among other instructive molecules generated during the APR, lysophosphatidylcholine (LPC) promotes mature DC generation from differentiating human monocytes in vitro. It is shown here that LPC also controls the initiation of an adaptive immune response in vivo. LPC displays adjuvant properties when injected to mice in mixture with various antigens. Immunizations with LPC induced the production of antigen-specific antibodies with an efficiency similar to Alum, the reference adjuvant for human vaccination. Importantly, LPC also induced cytotoxic T cell responses, opening perspectives for vaccine development. Therefore, LPC is a natural adjuvant for the immune system, inducing humoral and cellular immune responses.


Subject(s)
Adjuvants, Immunologic/pharmacology , Immunity, Cellular , Lysophosphatidylcholines/pharmacology , Adjuvants, Immunologic/administration & dosage , Animals , Cytotoxicity Tests, Immunologic , Enzyme-Linked Immunosorbent Assay , Female , Immunity, Cellular/drug effects , Immunoglobulin G/blood , Lysophosphatidylcholines/administration & dosage , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Animal , Muramidase/immunology , Ovalbumin/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...