Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 15: 1337562, 2024.
Article in English | MEDLINE | ID: mdl-38375192

ABSTRACT

Introduction: Determining the causal relationship between polycystic ovary syndrome (PCOS) and gestational diabetes mellitus (GDM) holds significant implications for GDM prevention and treatment. Despite numerous observational studies suggesting an association between PCOS and GDM, it remains unclear whether a definitive causal relationship exists between these two conditions and which specific features of PCOS contribute to increased incidence of GDM. Methods: The causal relationship between polycystic ovary syndrome (PCOS), its characteristic indices, and gestational diabetes mellitus (GDM) was investigated using a two-sample Mendelian randomization study based on publicly available statistics from genome-wide association studies (GWAS). The inverse-variance weighted method was employed as the primary analytical approach to examine the association between PCOS, its characteristic indices, and GDM. MR Egger intercept was used to assess pleiotropy, while Q values and their corresponding P values were utilized to evaluate heterogeneity. It is important to note that this study adopts a two-sample MR design where PCOS and its characteristic indices are considered as exposures, while GDM is treated as an outcome. Results: The study results indicate that there is no causal relationship between PCOS and GDM (all methods P > 0.05, 95% CI of OR values passed 1). The IVW OR value was 1.007 with a 95% CI of 0.906 to 1.119 and a P value of 0.904. Moreover, the MR Egger Q value was 8.141 with a P value of 0.701, while the IVW Q value was also 8.141 with a P value of 0.774, indicating no significant heterogeneity. Additionally, the MR Egger intercept was 0.0004, which was close to zero with a P value of 0.988, suggesting no pleiotropy. However, the study did find a causal relationship between several other factors such as testosterone, high-density lipoprotein, sex hormone-binding globulin, body mass index, waist-hip ratio, apolipoprotein A-I, number of children, diabetes illnesses of mother, father and siblings, hemoglobin A1c, fasting insulin, fasting blood glucose, years of schooling, and GDM based on the IVW method. Conclusion: We observed no association between genetically predicted PCOS and the risk of GDM, implying that PCOS itself does not confer an increased susceptibility to GDM. The presence of other PCOS-related factors such as testosterone, high-density lipoprotein, and sex hormone-binding globulin may elucidate the link between PCOS and GDM. Based on these findings, efforts aimed at preventing GDM in individuals with PCOS should prioritize those exhibiting high-risk features rather than encompassing all women with PCOS.


Subject(s)
Diabetes, Gestational , Polycystic Ovary Syndrome , Child , Pregnancy , Humans , Female , Diabetes, Gestational/genetics , Sex Hormone-Binding Globulin , Genome-Wide Association Study , Mendelian Randomization Analysis , Polycystic Ovary Syndrome/complications , Polycystic Ovary Syndrome/genetics , Lipoproteins, HDL , Testosterone
2.
J Ovarian Res ; 16(1): 230, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38007488

ABSTRACT

Clinical prediction models play an important role in the field of medicine. These can help predict the probability of an individual suffering from disease, complications, and treatment outcomes by applying specific methodologies. Polycystic ovary syndrome (PCOS) is a common disease with a high incidence rate, huge heterogeneity, short- and long-term complications, and complex treatments. In this systematic review study, we reviewed the progress of clinical prediction models in PCOS patients, including diagnosis and prediction models for PCOS complications and treatment outcomes. We aimed to provide ideas for medical researchers and clues for the management of PCOS. In the future, models with poor accuracy can be greatly improved by adding well-known parameters and validations, which will further expand our understanding of PCOS in terms of precision medicine. By developing a series of predictive models, we can make the definition of PCOS more accurate, which can improve the diagnosis of PCOS and reduce the likelihood of false positives and false negatives. It will also help discover complications earlier and treatment outcomes being known earlier, which can result in better outcomes for women with PCOS.


Subject(s)
Polycystic Ovary Syndrome , Female , Humans , Polycystic Ovary Syndrome/drug therapy , Models, Statistical , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...