Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Ticks Tick Borne Dis ; 14(6): 102209, 2023 11.
Article in English | MEDLINE | ID: mdl-37327738

ABSTRACT

Tick saliva helps blood feeding by its antihemostatic and immunomodulatory activities. Tick salivary gland transcriptomes (sialotranscriptomes) revealed thousands of transcripts coding for putative secreted polypeptides. Hundreds of these transcripts code for groups of similar proteins, constituting protein families, such as the lipocalins and metalloproteases. However, while many of these transcriptome-derived protein sequences matches sequences predicted by tick genome assemblies, the majority are not represented in these proteomes. The diversity of these transcriptome-derived transcripts could derive from artifacts generated during assembly of short Illumina reads or derive from polymorphisms of the genes coding for these proteins. To investigate this discrepancy, we collected salivary glands from blood-feeding ticks and, from the same homogenate, made and sequenced libraries following Illumina and PacBio protocols, with the assumption that the longer PacBio reads would reveal the sequences generated by the assembly of Illumina reads. Using both Rhipicephalus zambeziensis and Ixodes scapularis ticks, we have obtained more lipocalin transcripts from the Illumina library than the PacBio library. To verify whether these unique Illumina transcripts were real, we selected 9 uniquely Illumina-derived lipocalin transcripts from I. scapularis and attempted to obtain PCR products. These were obtained and their sequences confirmed the presence of these transcripts in the I. scapularis salivary homogenate. We further compared the predicted salivary lipocalins and metalloproteases from I. scapularis sialotranscriptomes with those found in the predicted proteomes of 3 publicly available genomes of I. scapularis. Results indicate that the discrepancy between the genome and transcriptome sequences for these salivary protein families is due to a high degree of polymorphism within these genes.


Subject(s)
Ixodes , Rhipicephalus , Animals , Transcriptome , Proteome/metabolism , Lipocalins/genetics , Lipocalins/metabolism , Salivary Glands , Rhipicephalus/genetics , Ixodes/genetics , Salivary Proteins and Peptides/genetics
2.
Front Microbiol ; 13: 1023980, 2022.
Article in English | MEDLINE | ID: mdl-36439862

ABSTRACT

The Gulf Coast tick, Amblyomma maculatum, is a vector of several tick-borne pathogens, including Rickettsia parkeri. The ability of R. parkeri to persist within the tick population through transovarial and transstadial transmission, without apparently harming the ticks, contributes to the pathogen's perpetuation in the tick population. Previous studies have shown that the R. parkeri load in A. maculatum is regulated by the tick tissues' oxidant/antioxidant balance and the non-pathogenic tick microbiome. To obtain further insights into the interaction between tick and pathogen, we performed a bulk RNA-Seq for differential transcriptomic analysis of ovaries and salivary glands from R. parkeri-infected and uninfected ticks over the feeding course on a host. The most differentially expressed functional category was of bacterial origin, exhibiting a massive overexpression of bacterial transcripts in response to the R. parkeri infection. Candidatus Midichloria mitochondrii and bacteria from the genus Rickettsia were mainly responsible for the overexpression of bacterial transcripts. Host genes were also modulated in R. parkeri-infected tick organs. A similar number of host transcripts from all analyzed functional categories was negatively and positively modulated, revealing a global alteration of the A. maculatum transcriptome in response to pathogen infection. R. parkeri infection led to an increase in salivary transcripts involved in blood feeding success as well as a decrease in ovarian immune transcripts. We hypothesize that these transcriptional alterations facilitate pathogen persistence and transmission within tick population.

3.
Parasit Vectors ; 15(1): 248, 2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35810301

ABSTRACT

BACKGROUND: Ticks are obligate hematophagous arthropods transmitting a wide range of pathogens to humans and animals. They also harbor a non-pathogenic microbiota, primarily in the ovaries and the midgut. In the previous study on Ixodes ricinus, we used a culture-independent approach and showed a diverse but quantitatively poor midgut bacterial microbiome. Our analysis also revealed the absence of a core microbiome, suggesting an environmental origin of the tick midgut microbiota. METHODS: A bacterial analysis of the midgut of adult females collected by flagging from two localities in the Czech Republic was performed. Using the culture-independent approach, we tested the hypothesis that the midgut microbiome is of the environmental origin. We also cultured indigenous bacteria from the tick midgut and used these to feed ticks artificially in an attempt to manipulate the midgut microbiome. RESULTS: The midgut showed a very low prevalence and abundance of culturable bacteria, with only 37% of ticks positive for bacteria. The culture-independent approach revealed the presence of Borrelia sp., Spiroplasma sp., Rickettsia sp., Midichloria sp. and various mainly environmental Gram-positive bacterial taxa. The comparison of ticks from two regions revealed that the habitat influenced the midgut bacterial diversity. In addition, the midgut of ticks capillary fed with the indigenous Micrococcus luteus (Gram-positive) and Pantoea sp. (Gram-negative) could not be colonized due to rapid and effective clearance of both bacterial taxa. CONCLUSIONS: The midgut microbiome of I. ricinus is diverse but low in abundance, with the exception of tick-borne pathogens and symbionts. The environment impacts the diversity of the tick midgut microbiome. Ingested extracellular environmental bacteria are rapidly eliminated and are not able to colonize the gut. We hypothesize that bacterial elimination triggered in the midgut of unfed adult females is critical to maintain low microbial levels during blood-feeding.


Subject(s)
Borrelia , Ixodes , Microbiota , Rickettsia , Animals , Czech Republic/epidemiology , Female , Ixodes/microbiology
4.
Front Microbiol ; 13: 868575, 2022.
Article in English | MEDLINE | ID: mdl-35591999

ABSTRACT

In the past decade, metagenomics studies exploring tick microbiota have revealed widespread interactions between bacteria and arthropods, including symbiotic interactions. Functional studies showed that obligate endosymbionts contribute to tick biology, affecting reproductive fitness and molting. Understanding the molecular basis of the interaction between ticks and their mutualist endosymbionts may help to develop control methods based on microbiome manipulation. Previously, we showed that Rhipicephalus microplus larvae with reduced levels of Coxiella endosymbiont of R. microplus (CERM) were arrested at the metanymph life stage (partially engorged nymph) and did not molt into adults. In this study, we performed a transcriptomic differential analysis of the R. microplus metanymph in the presence and absence of its mutualist endosymbiont. The lack of CERM resulted in an altered expression profile of transcripts from several functional categories. Gene products such as DA-P36, protease inhibitors, metalloproteases, and evasins, which are involved in blood feeding capacity, were underexpressed in CERM-free metanymphs. Disregulation in genes related to extracellular matrix remodeling was also observed in the absence of the symbiont. Taken together, the observed alterations in gene expression may explain the blockage of development at the metanymph stage and reveal a novel physiological aspect of the symbiont-tick-vertebrate host interaction.

5.
Front Cell Infect Microbiol ; 12: 1081666, 2022.
Article in English | MEDLINE | ID: mdl-36699720

ABSTRACT

In addition to being vectors of pathogenic bacteria, ticks also harbor intracellular bacteria that associate with ticks over generations, aka symbionts. The biological significance of such bacterial symbiosis has been described in several tick species but its function in Ixodes ricinus is not understood. We have previously shown that I. ricinus ticks are primarily inhabited by a single species of symbiont, Midichloria mitochondrii, an intracellular bacterium that resides and reproduces mainly in the mitochondria of ovaries of fully engorged I. ricinus females. To study the functional integration of M. mitochondrii into the biology of I. ricinus, an M. mitochondrii-depleted model of I. ricinus ticks was sought. Various techniques have been described in the literature to achieve dysbiosed or apo-symbiotic ticks with various degrees of success. To address the lack of a standardized experimental procedure for the production of apo-symbiotic ticks, we present here an approach utilizing the ex vivo membrane blood feeding system. In order to deplete M. mitochondrii from ovaries, we supplemented dietary blood with tetracycline. We noted, however, that the use of tetracycline caused immediate toxicity in ticks, caused by impairment of mitochondrial proteosynthesis. To overcome the tetracycline-mediated off-target effect, we established a protocol that leads to the production of an apo-symbiotic strain of I. ricinus, which can be sustained in subsequent generations. In two generations following tetracycline administration and tetracycline-mediated symbiont reduction, M. mitochondrii was gradually eliminated from the lineage. Larvae hatched from eggs laid by such M. mitochondrii-free females repeatedly performed poorly during blood-feeding, while the nymphs and adults performed similarly to controls. These data indicate that M. mitochondrii represents an integral component of tick ovarian tissue, and when absent, results in the formation of substandard larvae with reduced capacity to blood-feed.


Subject(s)
Ixodes , Animals , Female , Ixodes/microbiology , Tetracycline , Anti-Bacterial Agents , Mitochondria , Symbiosis
6.
Sci Rep ; 10(1): 18296, 2020 10 26.
Article in English | MEDLINE | ID: mdl-33106528

ABSTRACT

To further obtain insights into the Rhipicephalus microplus transcriptome, we used RNA-seq to carry out a study of expression in (i) embryos; (ii) ovaries from partially and fully engorged females; (iii) salivary glands from partially engorged females; (iv) fat body from partially and fully engorged females; and (v) digestive cells from partially, and (vi) fully engorged females. We obtained > 500 million Illumina reads which were assembled de novo, producing > 190,000 contigs, identifying 18,857 coding sequences (CDS). Reads from each library were mapped back into the assembled transcriptome giving a view of gene expression in different tissues. Transcriptomic expression and pathway analysis showed that several genes related in blood digestion and host-parasite interaction were overexpressed in digestive cells compared with other tissues. Furthermore, essential genes for the cell development and embryogenesis were overexpressed in ovaries. Taken altogether, these data offer novel insights into the physiology of production and role of saliva, blood digestion, energy metabolism, and development with submission of 10,932 novel tissue/cell specific CDS to the NCBI database for this important tick species.


Subject(s)
Gene Expression Profiling/methods , Gene Regulatory Networks , Rhipicephalus/physiology , Animals , Cattle , Female , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Organ Specificity , Ovary/chemistry , Pregnancy , Rhipicephalus/genetics , Saliva/chemistry , Sequence Analysis, RNA
7.
Article in English | MEDLINE | ID: mdl-32457850

ABSTRACT

Culture-independent metagenomic methodologies have enabled detection and identification of microorganisms in various biological systems and often revealed complex and unknown microbiomes. In many organisms, the microbiome outnumbers the host cells and greatly affects the host biology and fitness. Ticks are hematophagous ectoparasites with a wide host range. They vector a number of human and animal pathogens and also directly cause major economic losses in livestock. Although several reports on a tick midgut microbiota show a diverse bacterial community, in most cases the size of the bacterial population has not been determined. In this study, the microbiome was quantified in the midgut and ovaries of the ticks Ixodes ricinus and Rhipicephalus microplus before, during, and after blood feeding. Although the size of bacterial community in the midgut fluctuated with blood feeding, it was overall extremely low in comparison to that of other hematophagous arthropods. In addition, the tick ovarian microbiome of both tick species exceeded the midgut 16S rDNA copy numbers by several orders of magnitude. This indicates that the ratio of a tick midgut/ovary microbiome represents an exception to the general biology of other metazoans. In addition to the very low abundance, the tick midgut diversity in I. ricinus was variable and that is in contrast to that found in the tick ovary. The ovary of I. ricinus had a very low bacterial diversity and a very high and stable bacterial abundance with the dominant endosymbiont, Midichloria sp. The elucidation of this aspect of tick biology highlights a unique tissue-specific microbial-invertebrate host interaction.


Subject(s)
Ixodes , Ixodidae , Microbiota , Rhipicephalus , Animals , Female , Humans , Ovary
8.
Sci Rep ; 7(1): 17554, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29242567

ABSTRACT

The cattle tick Rhipicephalus microplus is a hematophagous ectoparasite that causes important economic losses in livestock. Different species of ticks harbor a symbiont bacterium of the genus Coxiella. It was showed that a Coxiella endosymbiont from R. microplus (CERM) is a vertically transmitted mutualist symbiont, comprising 98% of the 16S rRNA sequences in both eggs and larvae. Sequencing of the bacterial genome revealed genes for biosynthetic pathways for several vitamins and key metabolic cofactors that may provide a nutritional complement to the tick host. The CERM was abundant in ovary and Malpighian tubule of fully engorged female. Tetracycline treatment of either the tick or the vertebrate host reduced levels of bacteria in progeny in 74% for eggs and 90% for larvae without major impact neither on the reproductive fitness of the adult female or on embryo development. However, CERM proved to be essential for the tick to reach the adult life stage, as under antibiotic treatment no tick was able to progress beyond the metanymph stage. Data presented here suggest that interference in the symbiotic CERM-R. microplus relationship may be useful to the development of alternative control methods, highlighting the interdependence between ticks and their endosymbionts.


Subject(s)
Coxiella/physiology , Rhipicephalus/microbiology , Symbiosis , Animals , Coxiella/drug effects , Coxiella/genetics , Female , Genome, Bacterial/genetics , Larva/drug effects , Larva/growth & development , Larva/microbiology , Nymph/drug effects , Nymph/growth & development , Nymph/microbiology , Ovum/drug effects , Ovum/growth & development , Ovum/microbiology , Rhipicephalus/growth & development , Symbiosis/drug effects , Tetracycline/pharmacology
9.
Vet Parasitol ; 207(1-2): 107-14, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25480468

ABSTRACT

Ticks have serious impacts on animal and human health, causing significant economic losses in cattle breeding. Besides damage due to the hematophagous behavior, they transmit several pathogens. Low cost and environmental safety have made vaccines a promising alternative control method against tick infestation. Metalloproteases (MPs) have been shown to be essential for diverse biological functions in hematophagous organisms, inhibiting blood clotting, degrading extracellular matrix proteins, and inhibiting host tissue repair via anti-angiogenic activity. In this study, we analyzed the immunoprotective potential of a recombinant MP against Rhipicephalus (Boophilus) microplus infestation. First, a cDNA encoding R. microplus amino acids sequence with highly conserved regions of the metzincin (reprolysin) group of MP was identified (BrRm-MP4). After expression and purification, recombinant BrRm-MP4 was used as a vaccinal antigen against R. microplus infestation in cattle (Bos taurus taurus). All vaccinated bovines developed immune response to the antigen, resulting in increased antibody level throughout the immunization protocol. Immunization with rBrRm-MP4 reduced tick feeding success, decreasing the number of engorged females and their reproduction potential, representing a 60% overall protection. These results show that rBrRm-MP4 provides protection against tick infestation, placing it is a potential candidate for an anti-tick vaccine.


Subject(s)
Arthropod Proteins/immunology , Cattle Diseases/prevention & control , Metalloproteases/immunology , Rhipicephalus/enzymology , Tick Infestations/veterinary , Vaccines/immunology , Animals , Arthropod Proteins/genetics , Arthropod Proteins/isolation & purification , Arthropod Proteins/metabolism , Cattle , Cattle Diseases/parasitology , DNA, Complementary/metabolism , Female , Immunization/veterinary , Metalloproteases/genetics , Metalloproteases/isolation & purification , Metalloproteases/metabolism , Recombinant Proteins/immunology , Rhipicephalus/genetics , Rhipicephalus/immunology , Tick Infestations/parasitology , Tick Infestations/prevention & control , Vaccination/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...