Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Planta Med ; 90(4): 316-332, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387478

ABSTRACT

Concerns about health hazards associated with the consumption of trans-delta-8-tetrahydrocannabinol products were highlighted in public health advisories from the U. S. Food and Drug Administration and U. S. Centers for Disease Control and Prevention. Simple and rapid quantitative methods to determine trans-delta-8-tetrahydrocannabinol impurities are vital to analyze such products. In this study, a gas chromatography-flame ionization detection method was developed and validated for the determination of delta-8-tetrahydrocannabinol and some of its impurities (recently published) found in synthesized trans-delta-8-tetrahydrocannabinol raw material and included olivetol, cannabicitran, Δ 8-cis-iso-tetrahydrocannabinol, Δ 4-iso-tetrahydrocannabinol, iso-tetrahydrocannabifuran, cannabidiol, Δ 4,8-iso-tetrahydrocannabinol, Δ 8-iso-tetrahydrocannabinol, 4,8-epoxy-iso-tetrahydrocannabinol, trans-Δ 9-tetrahydrocannabinol, 8-hydroxy-iso-THC, 9α-hydroxyhexahydrocannabinol, and 9ß-hydroxyhexahydrocannabinol. Validation of the method was assessed according to the International Council for Harmonization guidelines and confirmed linearity with R2 ≥ 0.99 for all the target analytes. The limit of detection and limit of quantitation were 1.5 and 5 µg/mL, respectively, except for olivetol, which had a limit of detection of 3 µg/mL and a limit of quantitation of 10 µg/mL. Method precision was calculated as % relative standard deviation and the values were less than 8.4 and 9.9% for the intraday precision and inter-day precision, respectively. The accuracy ranged from 85 to 118%. The method was then applied to the analysis of 21 commercially marketed vaping products claiming to contain delta-8-tetrahydrocannabinol. The products analyzed by this method have various levels of these impurities, with all products far exceeding the 0.3% of trans-Δ 9-tetrahydrocannabinol limit for hemp under the Agriculture Improvement Act of 2018. The developed gas chromatography-flame ionization detection method can be an important tool for monitoring delta-8-tetrahydrocannabinol impurities in commercial products.


Subject(s)
Dronabinol , Dronabinol/analogs & derivatives , Resorcinols , Vaping , Dronabinol/analysis , Gas Chromatography-Mass Spectrometry/methods , Chromatography, Gas
2.
Med Cannabis Cannabinoids ; 6(1): 148-159, 2023.
Article in English | MEDLINE | ID: mdl-37942295

ABSTRACT

Introduction: Cannabidiol (CBD) has several potential benefits and therapeutic uses, especially in pain, inflammation, and anxiety. CBD has high hydrophobicity and very low solubility in water. CBD has also shown exceptionally low oral-gastrointestinal (oral-GI) bioavailability. In this study, we aimed to examine the oral gastrointestinal absorption and subsequent bioavailability of CBD in a nanoemulsion formulation prepared by Pressure BioSciences' UltraShearTM technology. Methods: CBD nanoemulsion (2%) was provided by Pressure BioSciences, Inc. (South Easton, MA), and CBD pharmacokinetic parameters were evaluated in male Sprague-Dawley rats using LC-MS/MS technology. Results: Bioavailability of orally delivered CBD UltraShear nanoemulsion was calculated to be 18.6% at 6 h and 25.4% at 24 h. While oral-GI bioavailability is unsurprisingly limited by first-pass metabolism, it is nonetheless notable that CBD bioavailability for oral-GI UltraShear nanoemulsion CBD is roughly 3-4x higher than the typical bioavailability for oral-GI CBD delivered in oil solution or conventional edible formats. Conclusion: This study has provided a compelling demonstration of unprecedented speed and efficiency of oral-GI CBD absorption of CBD UltraShear nanoemulsions, achieving 10% of levels achieved for direct IV injection within 30 min and 80% of IV levels in 24 h. Notably, within just the first hour post-administration, the bioavailability of oral CBD from UltraShear nanoemulsion formulation exceeded the typical 6% total CBD oral bioavailability benchmarks reported for CBD edibles and ultimately achieved 3-4X these levels within 6-24 h.

3.
Polymers (Basel) ; 15(18)2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37765570

ABSTRACT

Carbon neutrality has led to a surge in the popularity of hydrogen tanks in recent years. However, designing high-performance tanks necessitates the precise determination of input material properties. Unfortunately, conventional characterization methods often underestimate these material properties. To address this limitation, the current research introduces alternative designs of ring tensile specimens, which enable accurate and reliable characterization of filament-wound structures. The advantages and disadvantages of these alternative designs are thoroughly discussed, considering both numerical simulations and experimental investigations. Moreover, the proposed ring tensile methods are applied to characterize thermoplastic composites for hydrogen storage tanks. The results indicate that the mechanical strengths and stiffness of carbon fiber-reinforced thermoplastic Elium® 591 composites closely match those of epoxy-based composites. This newfound accuracy in measurement is expected to contribute significantly to the development of recyclable hydrogen tanks.

4.
Pharmaceutics ; 15(4)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37111592

ABSTRACT

The proto-oncogenic transcription factor c-MYC plays a pivotal role in the development of tumorigenesis, cellular proliferation, and the control of cell death. Its expression is frequently altered in many cancer types, including hematological malignancies such as leukemia. The dimer isoniazide ELI-XXIII-98-2 is a derivative of the natural product artemisinin, with two artemisinin molecules and an isoniazide moiety as a linker in between them. In this study, we aimed to study the anticancer activity and the molecular mechanisms of this dimer molecule in drug-sensitive CCRF-CEM leukemia cells and their corresponding multidrug-resistant CEM/ADR5000 sub-line. The growth inhibitory activity was studied using the resazurin assay. To reveal the molecular mechanisms underlying the growth inhibitory activity, we performed in silico molecular docking, followed by several in vitro approaches such as the MYC reporter assay, microscale thermophoresis, microarray analyses, immunoblotting, qPCR, and comet assay. The artemisinin dimer isoniazide showed a potent growth inhibitory activity in CCRF-CEM but a 12-fold cross-resistance in multidrug-resistant CEM/ADR5000 cells. The molecular docking of artemisinin dimer isoniazide with c-MYC revealed a good binding (lowest binding energy of -9.84 ± 0.3 kcal/mol) and a predicted inhibition constant (pKi) of 66.46 ± 29.5 nM, which was confirmed by microscale thermophoresis and MYC reporter cell assays. Furthermore, c-MYC expression was downregulated by this compound in microarray hybridization and Western blotting analyses. Finally, the artemisinin dimer isoniazide modulated the expression of autophagy markers (LC3B and p62) and the DNA damage marker pH2AX, indicating the stimulation of both autophagy and DNA damage, respectively. Additionally, DNA double-strand breaks were observed in the alkaline comet assay. DNA damage, apoptosis, and autophagy induction could be attributed to the inhibition of c-MYC by ELI-XXIII-98-2.

5.
J Nat Prod ; 86(4): 822-829, 2023 04 28.
Article in English | MEDLINE | ID: mdl-36827690

ABSTRACT

Qualitative analysis of several commercial products containing Δ8-tetrahydrocannabinol (Δ8-THC) as a major component using GC-MS resulted in the identification of several impurities along with Δ8-THC. In an attempt to isolate and identify these impurities, a commercial Δ8-THC distillate was selected for the isolation work. Eleven impurities were isolated using a variety of chromatographic techniques, and their chemical structures were determined. These include Δ4,8-iso-tetrahydrocannabinol (1), Δ4-iso-tetrahydrocannabinol (2), Δ8-cis-iso-tetrahydrocannabinol (3), 4,8-epoxy-iso-tetrahydrocannabinol (4), 8-hydroxy-iso-tetrahydrocannabinol (5), 9ß-hydroxyhexahydrocannabinol (6), 9α-hydroxyhexa-hydrocannabinol (7), iso-tetrahydrocannabifuran (8), cannabicitran (CBT, 9), olivetol (10), and Δ9-THC (11). The chemical structures of the purified compounds were determined using several spectroscopic methods, including 1D (1H, 13C, and DEPT-135) and 2D (COSY, HMQC, HMBC, and NOESY) NMR, LC-MS, and GC-MS. Other naturally occurring cannabinoids and impurities were also identified in GC-MS chromatograms but were not isolated. These were cannabidiol (CBD, 12), cannabinol (CBN, 13), hexahydrocannabinol (HHC, 14), and Δ8-tetrahydrocannabivarin (Δ8-THCV, 15). The chemical structure of Δ8-THCV (15), for which a standard was not available, was confirmed by partial synthesis and NMR analysis. This is the first report for many of the above compounds as well as Δ8-THCV as impurities in Δ8-THC products.


Subject(s)
Cannabidiol , Cannabinoids , Dronabinol , Cannabinoids/analysis , Cannabinol , Cannabidiol/analysis , Gas Chromatography-Mass Spectrometry/methods
6.
Cannabis Cannabinoid Res ; 8(5): 899-910, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36322895

ABSTRACT

Background: Cannabis has a long history of being credited with centuries of healing powers for millennia. The cannabis plant is a rich source of cannabinoids and terpenes. Each cannabis chemovar exhibits a different flavor and aroma, which are determined by its terpene content. Methods: In this study, a gas chromatography-flame ionization detector method was developed and validated for the determination of the 10 major terpenes in the main three chemovars of Cannabis sativa L. with n-tridecane used as the internal standard following the standard addition method. The 10 major terpenes (monoterpenes and sesquiterpenes) are α-pinene, ß-pinene, ß-myrcene, limonene, terpinolene, linalool, α-terpineol, ß-caryophyllene, α-humulene, and caryophyllene oxide. The method was validated according to Association of Official Analytical Chemists guidelines. Spike recovery studies for all terpenes were carried out on placebo cannabis material and indoor-growing high THC chemovar with authentic standards. Results: The method was linear over the calibration range of 1-100 µg/mL with r2>0.99 for all terpenes. The limit of detection and limit of quantification were calculated to be 0.3 and 1.0 µg/mL, respectively, for all terpenes. The accuracy (%recovery) at all levels ranged from 89% to 104% and 90% to 111% for placebo and indoor-growing high THC chemovar, respectively. The repeatability and intermediate precision of the method were evaluated by the quantification of target terpenes in the three different C. sativa chemovars, resulting in acceptable relative standard deviations (less than 10%). Conclusions: The developed method is simple, sensitive, reproducible, and suitable for the detection and quantification of monoterpenes and sesquiterpenes in C. sativa biomass.

7.
Planta Med ; 89(6): 683-696, 2023 May.
Article in English | MEDLINE | ID: mdl-36257598

ABSTRACT

For decades, Cannabis sativa had been illegal to sell or consume around the world, including in the United States. However, in light of the recent 2018 Farm Bill and the legalization of hemp across the US, various cannabis preparations have flooded the market, making it essential to be able to quantitate the levels of the different acidic and neutral cannabinoids in C. sativa and to have a complete cannabinoid profile of the different chemovars of the cannabis plant. A GC-FID method was developed and validated for the analysis of 20 acidic and neutral cannabinoids as trimethylsilyl (TMS) derivatives. The analyzed cannabinoids include cannabidivarinic acid (CBDVA), cannabidiolic acid (CBDA), cannabinolic acid (CBNA), cannabielsoic acid (CBEA), cannabicyclolic acid (CBLA), cannabichromenic acid (CBCA), trans-Δ9-tetrahydrocannabivarinic acid (Δ9-THCVA), trans-Δ9-tetrahydrocannabinolic acid A (Δ9-THCAA), cannabigerolic acid (CBGA), cannabidiol (CBD), cannabicyclol (CBL), cannabidivarin (CBDV), trans-Δ9-tetrahydrocannabivarin (THCV), cannabichromene (CBC), trans-Δ8-tetrahydrocannabinol (Δ8-THC), trans-Δ9-tetrahydrocannabinol (Δ9-THC), cannabigerol (CBG), cannabinol (CBN), cannabicitran (CBT), and cannabielsoin (CBE). The method limit of detection (LOD) was as low as 0.1 µg/mL, while the limit of quantitation ranged from 0.25 µg/mL to 0.5 µg/mL. The precision (%RSD) was < 10%, while trueness ranged from 90 - 107%. The developed method is simple, accurate, and sensitive for the quantitation of all 20 acidic and neutral cannabinoids. Finally, the proposed method was successfully applied to the quantitation of the cannabinoids in different cannabis chemovars grown at the University of Mississippi.


Subject(s)
Cannabinoids , Cannabis , Cannabinoids/analysis , Limit of Detection
8.
Drug Metab Pharmacokinet ; 45: 100463, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35709685

ABSTRACT

Primaquine (PQ) is a racemic drug used in treatment of malaria for six decades. Recent studies suggest that the two enantiomers of PQ are differentially metabolized in animals, and this results in different pharmacological and toxicological profiles. The current study characterizes the pharmacokinetic (PK) properties, metabolism and tolerability of the individual enantiomers of PQ in healthy human volunteers with normal glucose-6-phosphate dehydrogenase (G6PD) activity. Two cohorts (at two dose levels), each with 18 subjects, participated in three study arms in a crossover fashion: a single dose of the (-)-R enantiomer (RPQ), a single dose of the (+)-S enantiomer (SPQ), and a single dose of racemic PQ (RSPQ). PQ and its key metabolites carboxyprimaquine (cPQ) and PQ-N-carbamoyl glucuronide (PQ-N-CG) were analyzed. Clear differences were observed in PK and metabolism of the two enantiomers. Relative PQ exposure was higher with SPQ as compared to RPQ. PQ maximum plasma concentration (Cmax) and area under the plasma concentration-time curve were higher for SPQ, while the apparent volume of distribution and total body clearance were higher for RPQ. Metabolism of the two enantiomers showed dramatic differences: plasma PQ-N-CG was derived solely from SPQ, while RPQ was much more efficiently converted to cPQ than was SPQ. Cmax of cPQ and PQ-N-CG were 10 and 2 times higher, respectively, than the parent drugs. The study demonstrates that the PK properties of PQ enantiomers show clear differences, and metabolism is highly enantioselective. Such differences in metabolism suggest potentially distinct toxicity profiles in multi-dose regimens, especially in G6PD-deficient subjects.


Subject(s)
Antimalarials , Primaquine , Animals , Antimalarials/metabolism , Antimalarials/pharmacology , Healthy Volunteers , Humans , Primaquine/metabolism , Stereoisomerism
9.
Int J Pharm ; 616: 121564, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35151817

ABSTRACT

The current study aimed to determine the effect of inclusion of a mucoadhesive agent on the intensity and duration of intraocular pressure (IOP) lowering activity of Δ9-tetrahydrocannabinol-valine-hemisuccinate (THC-VHS) loaded in a nanoemulsion (THC-VHS-NE) formulation. THC-VHS-NE formulation with Carbopol®940NF added as a mucoadhesive agent (THC-VHS-NEC) was prepared using hot-homogenization followed by probe sonication and characterized. A comparative evaluation of the IOP lowering activity of THC-VHS-NEC, THC-VHS-NE, THC-NEC, and commercial latanoprost ophthalmic solution, was undertaken in normotensive New Zealand white rabbits. The effect of pH, surfactant concentration, and autoclave process on the IOP lowering activity of THC-VHS-NEC was also studied. The formulation demonstrated desired viscosity, physicochemical properties, and autoclave process stability. The THC-VHS-NEC formulation showed a significant (p < 0.05) improvement in the duration of IOP lowering activity, compared to THC-NEC and THC-VHS-NE. Moreover, in this model, THC-VHS-NEC was more effective than commercially available latanoprost ophthalmic formulation, in terms of both duration and intensity of IOP lowering. A change in formulation pH, surfactant concentration, or sterilization process did not impact the IOP lowering activity of THC-VHS-NEC. Overall, inclusion of a mucoadhesive agent in THC-VHS-NE formulation, significantly increased the duration of activity, and could lead to a once- or twice- a day dosing regimen.


Subject(s)
Eye Diseases , Intraocular Pressure , Animals , Antihypertensive Agents/therapeutic use , Dronabinol , Eye Diseases/drug therapy , Latanoprost , Ophthalmic Solutions , Rabbits , Valine
10.
Cannabis Cannabinoid Res ; 7(6): 804-813, 2022 12.
Article in English | MEDLINE | ID: mdl-34962133

ABSTRACT

Background and Purpose: This study sought to determine whether cannabidiol (CBD) or a CBD derivative, CBD monovalinate monohemisuccinate (CBD-val-HS), could attenuate the development of oxycodone reward while retaining its analgesic effects. Experimental Approach: To determine the effect on oxycodone reward, animals were enrolled in the conditioned place preference paradigm and received either saline or oxycodone (3.0 mg/kg) in combination with either CBD or CBD-val-HS utilizing three sets of drug-/no drug-conditioning trials. To determine if the doses of CBD or CBD-val-HS that blocked opioid reward would affect nociceptive processes, animals were enrolled in the hot plate and abdominal writhing assays when administered alone or in combination with a subanalgesic (1.0 mg/kg) or analgesic (3.0 mg/kg) dose of oxycodone. Key Results: Results from condition place preference demonstrated CBD was not able attenuate oxycodone place preference while CBD-val-HS attenuated these rewarding effects at 8.0 mg/kg and was void of rewarding or aversive properties. In contrast to CBD, CBD-val-HS alone produced analgesic effects in both nociceptive assays but was most effective compared with oxycodone against thermal nociception. Of interest, there was a differential interaction of CBD and CBD-val-HS×oxycodone across the two nociceptive assays producing subadditive responses on the hot plate assay, whereas additive responses were observed in the abdominal writhing assay. Conclusion: These findings suggest CBD-val-HS alone, a nonrewarding analgesic compound, could be useful in pain management and addiction treatment settings.


Subject(s)
Cannabidiol , Opioid-Related Disorders , Mice , Animals , Pain Management , Oxycodone/pharmacology , Cannabidiol/pharmacology , Opioid-Related Disorders/drug therapy
11.
Front Pharmacol ; 13: 1104735, 2022.
Article in English | MEDLINE | ID: mdl-36726785

ABSTRACT

Primaquine (PQ) is an 8-aminoquinoline antimalarial, active against dormant Plasmodium vivax hypnozoites and P. falciparum mature gametocytes. PQ is currently used for P. vivax radical cure and prevention of malaria transmission. PQ is a racemic drug and since the metabolism and pharmacology of PQ's enantiomers have been shown to be divergent, the objectives of this study were to evaluate the comparative tolerability and metabolism of PQ with respect to its two enantiomers in human volunteers in a 7 days' treatment schedule. Fifteen subjects with normal glucose-6-phosphate dehydrogenase (G6PDn) completed four arms, receiving each of the treatments, once daily for 7 days, in a crossover fashion, with a 7-14 days washout period in between: R-(-) enantiomer (RPQ) 22.5 mg; S-(+) enantiomer (SPQ) 22.5 mg; racemic PQ (RSPQ) 45 mg, and placebo. Volunteers were monitored for any adverse events (AEs) during the study period. PQ and metabolites were quantified in plasma and red blood cells (RBCs) by UHPLC-UV-MS/MS. Plasma PQ was significantly higher in SPQ treatment group than for RPQ. Carboxy-primaquine, a major plasma metabolite, was much higher in the RPQ treated group than SPQ; primaquine carbamoyl glucuronide, another major plasma metabolite, was derived only from SPQ. The ortho-quinone metabolites were also detected and showed differences for the two enantiomers in a similar pattern to the parent drugs. Both enantiomers and racemic PQ were well tolerated in G6PDn subjects with the 7 days regimen; three subjects showed mild AEs which did not require any intervention or discontinuation of the drug. The most consistent changes in G6PDn subjects were a gradual increase in methemoglobin and bilirubin, but these were not clinically important. However, the bilirubin increase suggests mild progressive damage to a small fraction of red cells. PQ enantiomers were also individually administered to two G6PD deficient (G6PDd) subjects, one heterozygous female and one hemizygous male. These G6PDd subjects showed similar results with the two enantiomers, but the responses in the hemizygous male were more pronounced. These studies suggest that although the metabolism profiles of individual PQ enantiomers are markedly different, they did not show significant differences in the safety and tolerability in G6PDn subjects.

12.
Materials (Basel) ; 14(21)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34771904

ABSTRACT

Damage generated due to low velocity impact in composite plates was evaluated focusing on the design and structural integrity of wind turbine blades. Impact properties of composite plates manufactured with thermoplastic and thermoset resins for different energy levels were measured and compared. Specimens were fabricated using VARTM (vacuum assisted resin transfer molding), using both matrix systems in conjunction with carbon, glass and carbon/glass hybrid fibers in the NCF (non-crimp fabric) architecture. Resin systems used were ELIUM 188O (thermoplastic) from Arkema Co., Ltd. and a standard epoxy reference, EPR-L20 from Hexion Co., Ltd. (thermoset). Auxiliary numerical finite element analyses were performed to better understand the tests physics. These models were then compared with the experimental results to verify their predictive capacity, given the intrinsic limitations due to their simplicity. Based in the presented results, it is possible to observe that ELIUM is capable to replace a conventional thermoset matrix. The thermoplastic panels presented similar results compared to its thermoset counterparts, with even a trend of less impact damage. Additionally, for both thermoplastic and thermoset resin systems, glass layups showed the lowest levels of damage while carbon panels presented the highest damage levels. Hybrid laminates can be applied as a compromise solution.

13.
Drug Deliv Transl Res ; 11(5): 2096-2107, 2021 10.
Article in English | MEDLINE | ID: mdl-33169348

ABSTRACT

The use of Δ9-tetrahydrocannabinol (THC) and Δ9-tetrahydrocannabinol-valine-hemisuccinate (THC-VHS; NB1111) has recently been investigated in the management of intraocular pressure (IOP). The current study was undertaken to develop an optimized THC-VHS-loaded nanoemulsion formulation (NE; THC-VHS-NE) that could improve the drug load and duration of activity. THC-VHS-NE formulation was prepared by homogenization followed by ultrasonication. Sesame oil, Tween®80, and Poloxamer®188 were used as the oil, surfactant, and cosurfactant, respectively. Stability of the optimized THC-VHS-NE formulation was observed at 4 °C. The IOP lowering effect of the lead formulations, commercial timolol, and latanoprost ophthalmic solutions, as well as an emulsion in Tocrisolve™ (THC-VHS-TOC), was studied in New Zealand White rabbits following topical administration. The effect of surfactant concentration and sterilization process on IOP-lowering activity was also studied. THC-VHS-NE formulations (0.5, 1.0, and 2.0% w/v) showed dose dependent duration of action. The 1.0%w/v THC-VHS-NE formulation was selected for further evaluation because of its desirable physical and chemical characteristics. THC-VHS-NE formulation prepared with 2% w/v Tween®80 exhibited a higher drop in IOP than the 0.75 and 4.0% w/v of Tween®80 containing formulations. The IOP-lowering duration was, however, similar for the formulations with 0.75 and 2.0% Tween®80, while that with 4.0% Tween®80 was shorter. THC-VHS-NE formulation produced a greater drop in IOP (p < 0.05) and a longer duration of activity compared to THC-VHS-TOC, latanoprost, and timolol. The formulation could be sterilized by filtration without impacting product attributes. Overall, the optimized THC-VHS-NE formulation demonstrated a significantly better IOP reduction profile in the test model compared to the commercial ophthalmic solutions evaluated.


Subject(s)
Dronabinol , Intraocular Pressure , Animals , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Dronabinol/pharmacology , Ophthalmic Solutions , Rabbits , Sterilization , Surface-Active Agents , Timolol , Valine
14.
Front Oncol ; 10: 965, 2020.
Article in English | MEDLINE | ID: mdl-32626657

ABSTRACT

Colorectal cancer (CRC) is a leading cause of cancer death in the United States. Artemisinin derivatives, including the dihydroartemisinin (DHA) monomers, are widely used as clinical agents for the treatment of malaria. Numerous studies demonstrate that these molecules also display antineoplastic activity with minimal toxicity. Of interest, dimeric DHA molecules are more active than their monomeric counterparts. Our previous data showed that the DHA dimer, NSC735847, was a potent inducer of death in different cancer cell types. However, the mechanism of action and activity of NSC735847 in colon cancer cells was not explored. The present study investigated the anticancer activity of NSC735847 and four structurally similar analog in human tumorigenic (HT-29 and HCT-116) and non-tumorigenic (FHC) colon cell lines. NSC735847 was more cytotoxic toward tumorigenic than non-tumorigenic colonocytes. In addition, NSC735847 exhibited greater cytotoxicity and tumor selectivity than the NSC735847 derivatives. To gain insight into mechanisms of NSC735847 activity, the requirement for endoplasmic reticulum (ER) stress and oxidative stress was tested. The data show that ER stress played a key role in the cytotoxicity of NSC735847 while oxidative stress had little impact on cell fate. In addition, it was observed that the cytotoxic activity of NSC735847 required the presence of heme, but not iron. The activity of NSC735847 was then compared to clinically utilized CRC therapeutics. NSC735847 was cytotoxic toward colon tumor cells at lower concentrations than oxaliplatin (OX). In addition, cell death was achieved at lower concentrations in colon cancer cells that were co-treated with folinic acid (Fol), 5-FU (F), and NSC735847 (FolFNSC), than Fol, F, and OX (FolFOX). The selective activity of NSC735847 and its ability to induce cytotoxicity at low concentrations suggest that NSC735847 may be an alternative for oxaliplatin in the FolFOX regimen for patients who are unable to tolerate its adverse effects.

15.
J Diet Suppl ; 17(5): 599-607, 2020.
Article in English | MEDLINE | ID: mdl-32431186

ABSTRACT

Products containing cannabidiol (CBD) are now available throughout the United States, but their quality is oftentimes questionable. The CBD and Δ9-tetrahydrocannabinol (THC) content of 25 commercially available hemp oil products, obtained throughout the state of Mississippi, was determined via gas chromatography/flame ionization detection (GC/FID). These products were also analyzed for the presence of synthetic cannabinoids using full scan gas chromatography/mass spectrometry (GC/MS). Analytical findings were compared to label claims for CBD content. Product label claims for CBD ranged from no claim to 500 mg per serving; however, marked variability was observed between actual CBD content and claimed quantities. Of the 25 products, only three were within ±20% of label claim. Fifteen were well below the stated claim for CBD; two exceed claims in excess of 50%; and 5 made no claims. In addition, THC content for three products exceeded the 0.3% legal limit. Furthermore, four products-primarily marketed for vaping-were adulterated with synthetic cannabinoids. From this small, but diverse, sampling of hemp-derived merchandise, it appears that most product label claims do not accurately reflect actual CBD content and are fraudulent in that regard. Moreover, products that exceed legal THC levels may jeopardize a consumer's employment status (i.e. failed "drug test"), while those adulterated with synthetic cannabinoids may subject them to serious adverse health effects. These findings argue strongly for further development of current good manufacturing practices for CBD-containing products and their stringent enforcement.


Subject(s)
Cannabidiol/analysis , Cannabis , Commerce/statistics & numerical data , Dronabinol/analysis , Product Labeling/statistics & numerical data , Drug Contamination , Gas Chromatography-Mass Spectrometry , Humans , Mississippi
16.
Med Cannabis Cannabinoids ; 3(1): 1-13, 2020 Aug.
Article in English | MEDLINE | ID: mdl-34676337

ABSTRACT

Hemp products are readily available and are aggressively marketed for their health and medicinal benefits. Most consumers of these products are interested because of cannabidiol (CBD), which has taken the natural products industry by storm. The CBD and Δ9-tetrahydrocannabinol (Δ9-THC) concentrations in these products are often absent, and even where labeled, the accuracy of the label amounts is often questionable. In order to gain a better understanding of the CBD content, fifty hemp products were analyzed by gas chromatography coupled with mass spectrometry (GC-MS) for CBD, Δ9-THC, tetrahydrocannabinolic acid (Δ9-THCAA), and cannabidiolic acid (CBDA). Δ9-THCAA and CBDA are the natural precursors of Δ9-THC and CBD in the plant material. Decarboxylation to Δ9-THC and CBD is essential to get the total benefit of the neutral cannabinoids. Therefore, analysis for the neutral and acid cannabinoids is important to get a complete picture of the chemical profile of the products. The GC-MS method used for the analysis of these products was developed and validated. A 10-m × 0.18-mm DB-1 (0.4 µ film) column was used for the analysis. The majority of the hemp products were oils, one of the products was hemp butter, one was a concentrated hemp powder capsule, and another was a hemp extract capsule. Most of the products contained less than 0.1% CBD and less than 0.01% Δ9-THC. Three products contained 0.1-1% CBD, and 2 products contained 0.1-0.9% Δ9-THC. All of the samples appeared to be decarboxylated since the CBDA and Δ9-THCAA results were less than 0.001%. The developed method is simple, sensitive, and reproducible for the detection of Δ9-THC, Δ9-THCAA, CBD, and CBDA in CBD oil/hemp products.

17.
Transl Vis Sci Technol ; 8(5): 15, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31588378

ABSTRACT

PURPOSE: Δ9-Tetrahydrocannabinol-valine-hemisuccinate, a hydrophilic prodrug of Δ9-tetrahydrocannabinol, synthesized with the aim of improving the ocular bioavailability of the parent molecule, was investigated in a lipid-based nanoparticle dosage form for ocular delivery. METHODS: Solid lipid nanoparticles (SLNs) of Δ9-tetrahydrocannabinol-valine-hemisuccinate and Δ9-tetrahydrocannabinol, along with a nanoemulsion of Δ9-tetrahydrocannabinol-valine-hemisuccinate, were tested for glaucoma management in a normotensive rabbit model by using a multiple-dosing protocol. Marketed formulations of timolol maleate and pilocarpine HCl were also tested for their pharmacodynamic profile, post-single dose administration. RESULTS: A peak intraocular pressure (IOP) drop of 30% from baseline was observed in rabbits treated with SLNs loaded with Δ9-tetrahydrocannabinol-valine-hemisuccinate at 90 minutes. Treated eyes of rabbits receiving Δ9-tetrahydrocannabinol-valine-hemisuccinate SLNs had significantly lower IOP than untreated eyes until 360 minutes, whereas the group receiving the emulsion formulation showed a drop in IOP until 90 minutes only. In comparison to marketed pilocarpine and timolol maleate ophthalmic solutions, Δ9-tetrahydrocannabinol-valine-hemisuccinate SLNs produced a greater effect on IOP in terms of both intensity and duration. In terms of tissue concentrations, significantly higher concentrations of Δ9-tetrahydrocannabinol-valine-hemisuccinate were observed in iris-ciliary bodies and retina-choroid with SLNs. CONCLUSION: Δ9-Tetrahydrocannabinol-valine-hemisuccinate formulated in a lipid-based nanoparticulate carrier shows promise in glaucoma pharmacotherapy. TRANSLATIONAL RELEVANCE: Glaucoma therapies usually focus on decreased aqueous humor production and increased outflow. However, such therapy is not curative, and there lies a need in preclinical research to focus efforts on agents that not only affect the aqueous humor dynamics but also provide neuroprotection. Historically, there have been bench-scale studies looking at retinal ganglion cell death post-axonal injury. However, for a smooth translation of this in vitro activity to the clinic, animal models examining IOP reduction, i.e., connecting the neuroprotective activity to a measurable outcome in glaucoma management (IOP), need to be investigated. This study investigated the IOP reduction efficacy of cannabinoids for glaucoma pharmacotherapy in a normotensive rabbit model, bringing forth a new class of agents with the potential of IOP reduction and improved permeation to the back of the eye, possibly providing neuroprotective benefits in glaucoma management.

18.
J Ocul Pharmacol Ther ; 35(5): 301-310, 2019 06.
Article in English | MEDLINE | ID: mdl-30998110

ABSTRACT

Purpose: Cannabidiol (CBD), active component of plant Cannabis sativa, has anti-inflammatory properties that could potentially help treat diabetic retinopathy-induced pain and inflammation. However, CBD is a lipophilic molecule making its topical delivery to back of the eye challenging. This study aims at improving ocular penetration of CBD by means of analog derivatization. Methods: Analogs were designed using various ligands, such as amino acids (AAs) and dicarboxylic acids (DCAs) and their combinations. Select analogs were screened in vitro with respect to their stability in ocular tissue homogenates. Based on in vitro stability, analogs were selected for in rabbits testing. Formulations containing these compounds were tested in rabbits to determine ocular tissue disposition of CBD and the analogs after topical application. The rabbits were sacrificed 90 min post-topical application and the aqueous humor, vitreous humor (VH), iris-ciliary bodies (IC), and retina-choroid (RC) were analyzed for CBD and analog content. Results: CBD-divalinate-dihemisuccinate (CBD-Di-VHS) and CBD-divalinate (CBD-Di-Val) were stable in the ocular tissue homogenates. Post-topical application, CBD and CBD-Di-Val analog levels were detected only in RC. Dosing of CBD-Di-VHS nanoemulsion generated analog levels both in the VH and in the RC, respectively. In contrast, post dosing of CBD-monovalinate-monohemisuccinate (CBD-Mono-VHS), both the analog and CBD were detected in the IC and RC. Conclusion: The analogs demonstrated superior penetration into ocular tissues in comparison with CBD. CBD-Di-VHS and CBD-Mono-VHS exhibited better permeation properties, possibly due to improved stability and physicochemical characteristics imparted by AA and DCA combination derivatives.


Subject(s)
Cannabidiol/analogs & derivatives , Cannabidiol/pharmacokinetics , Cornea/drug effects , Cornea/metabolism , Ophthalmic Solutions/chemical synthesis , Ophthalmic Solutions/pharmacokinetics , Animals , Cannabidiol/chemistry , Cannabidiol/pharmacology , Male , Ophthalmic Solutions/chemistry , Ophthalmic Solutions/pharmacology , Permeability/drug effects , Rabbits , Tissue Distribution
19.
Methods Mol Biol ; 1810: 149-182, 2018.
Article in English | MEDLINE | ID: mdl-29974427

ABSTRACT

A method was developed for the analysis of stimulant drugs, opiates, synthetic opiates, PCP, and benzodiazepines in wastewater samples using liquid chromatography coupled with tandem mass spectrometry (LC-MS-MS). A total of 33 compounds (stimulant-type drugs and metabolites of opiates, synthetic opiates, PCP, and benzodiazepines) were analyzed. These drugs included amphetamine (Amp) (1), methamphetamine (Meth) (2), methylenedioxyamphetamine (MDA) (3), methylenedioxymethamphetamine (MDMA) (4), methylenedioxyethylamphetamine (MDEA) (5), benzoylecgonine (BE, the major metabolite of Coc) (6), cocaine (Coc) (7), 6-monoacetylmorphine (6-MAM, the primary urinary metabolite of heroin) (8), codeine (9), hydrocodone (10), hydromorphone (11), morphine (12), norhydrocodone (the primary urinary metabolite of hydrocodone) (13), oxycodone (14), oxymorphone (15), 2-ethylidine-1,5-dimethyl-3,3-diphenylpyrolidine (EDDP, the primary urinary metabolite of methadone) (16), fentanyl (17), meperidine (18), methadone (19), norfentanyl (the primary urinary metabolite of fentanyl) (20), normeperidine (the primary urinary metabolite of meperidine) (21), phencyclidine (PCP) (22), tramadol (23), alprazolam (24), temazepam (25), nordiazepam (26), chlordiazepoxide (27), flurazepam (28), oxazepam (29), α-OH-alprazolam (the primary urinary metabolite of alprazolam) (30), α-OH-triazolam (the primary urinary metabolite of triazolam) (31), 2-OH-ethylflurazepam (the primary urinary metabolite of flurazepam) (32), and 7-NH2-flunitrazepam (the primary urinary metabolite of flunitrazepam) (33). These drugs were chosen because of their widespread abuse. Wastewater samples were collected at both the Oxford Wastewater Treatment Plant in Oxford, Mississippi (MS), and the University Wastewater Treatment Plant in University, MS. Samples were collected on weekends on which the Ole Miss Rebel football team held home games (Vaught-Hemingway Stadium, University, MS 38677). The collected samples were analyzed using a validated method and found to contain Amp, Meth, MDMA, MDA, Coc, BE, codeine, hydrocodone, hydromorphone, morphine, norhydrocodone, oxycodone, oxymorphone, tramadol, EDDP, meperidine, normeperidine, methadone, alprazolam, α-OH-alprazolam, nordiazepam, oxazepam, and temazepam. None of the samples contained MDEA, 6-MAM, fentanyl, norfentanyl, PCP, chlordiazepoxide, flurazepam, 2-OH-ethylflurazepam, 7-NH2-flunitrazepam, and α-OH-triazolam.


Subject(s)
Benzodiazepines/analysis , Central Nervous System Stimulants/analysis , Chromatography, Liquid , Opiate Alkaloids/analysis , Substance Abuse Detection , Substance-Related Disorders/epidemiology , Tandem Mass Spectrometry , Wastewater/analysis , Data Analysis , Humans , Reproducibility of Results , Sensitivity and Specificity , Substance Abuse Detection/methods
20.
Dermatitis ; 29(3): 127-131, 2018.
Article in English | MEDLINE | ID: mdl-29762206

ABSTRACT

BACKGROUND: Poison ivy, poison oak, and poison sumac are the most common causes of allergic contact dermatitis in North America. Although extensive efforts have been made to develop therapies that prevent and treat allergic contact dermatitis to these plants, there lacks an entirely effective method, besides complete avoidance. Efforts to develop a more effective preventive therapy, such as a vaccine, are ongoing. To accurately evaluate the efficacy of these new therapies, an appropriate assessment tool is needed. OBJECTIVE: The aim of this study was to evaluate the safety and appropriate doses of urushiol required for a patch test based on the hydrogel delivery system of the Thin-Layer Rapid Use Epicutaneous Patch Test. METHODS: Nine subjects were patch tested with various doses of urushiol and a negative control on day 0. Patch test sites were inspected for any local reaction on days 2, 4, 7, 14, and 21 after the initial exposure and graded by standard morphology. CONCLUSIONS: All 9 subjects did not have any significant adverse effects. The urushiol patch test using the hydrogel delivery method demonstrated urushiol sensitivity. All doses of urushiol resulted in a local reaction, and severity of reactions was correlated with dosage of urushiol used in the patch test.


Subject(s)
Allergens/administration & dosage , Catechols/administration & dosage , Dermatitis, Allergic Contact/diagnosis , Patch Tests/methods , Adult , Allergens/adverse effects , Allergens/immunology , Catechols/adverse effects , Catechols/immunology , Dermatitis, Allergic Contact/etiology , Dermatitis, Allergic Contact/immunology , Dose-Response Relationship, Immunologic , Female , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...