Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
bioRxiv ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38562882

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) has transformed our understanding of cell fate in developmental systems. However, identifying the molecular hallmarks of potency - the capacity of a cell to differentiate into other cell types - has remained challenging. Here, we introduce CytoTRACE 2, an interpretable deep learning framework for characterizing potency and differentiation states on an absolute scale from scRNA-seq data. Across 31 human and mouse scRNA-seq datasets encompassing 28 tissue types, CytoTRACE 2 outperformed existing methods for recovering experimentally determined potency levels and differentiation states covering the entire range of cellular ontogeny. Moreover, it reconstructed the temporal hierarchy of mouse embryogenesis across 62 timepoints; identified pan-tissue expression programs that discriminate major potency levels; and facilitated discovery of cellular phenotypes in cancer linked to survival and immunotherapy resistance. Our results illuminate a fundamental feature of cell biology and provide a broadly applicable platform for delineating single-cell differentiation landscapes in health and disease.

2.
Orbit ; : 1-4, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38567699

ABSTRACT

Disseminated intravascular coagulation (DIC) is characterized by abnormal activation of the coagulation cascade, which leads to simultaneous hypercoagulation and excessive bleeding. While it typically occurs in systemic diseases, such as infection, inflammation, obstetric complications, and malignancy, it can rarely manifest postoperatively. This case report describes a patient who presented with prolonged, refractory bleeding after ectropion repair via a lateral tarsal strip procedure. Due to the inability to control the patient's bleeding with conservative measures followed by surgical exploration and electrocautery, the patient underwent a hematologic work-up. Laboratory studies were consistent with DIC, attributed to his large burden of endovascular stents. He was treated with anticoagulation using apixaban in addition to tranexamic acid to achieve lasting hemostasis. This case highlights the importance of thorough preoperative assessments, even for minor surgical procedures, and systemic workup for atypical postoperative bleeding.

3.
Sci Adv ; 8(45): eabm3548, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36351009

ABSTRACT

Metastasis is responsible for most breast cancer-related deaths; however, identifying the cellular determinants of metastasis has remained challenging. Here, we identified a minority population of immature THY1+/VEGFA+ tumor epithelial cells in human breast tumor biopsies that display angiogenic features and are marked by the expression of the oncogene, LMO2. Higher abundance of LMO2+ basal cells correlated with tumor endothelial content and predicted poor distant recurrence-free survival in patients. Using MMTV-PyMT/Lmo2CreERT2 mice, we demonstrated that Lmo2 lineage-traced cells integrate into the vasculature and have a higher propensity to metastasize. LMO2 knockdown in human breast tumors reduced lung metastasis by impairing intravasation, leading to a reduced frequency of circulating tumor cells. Mechanistically, we find that LMO2 binds to STAT3 and is required for STAT3 activation by tumor necrosis factor-α and interleukin-6. Collectively, our study identifies a population of metastasis-initiating cells with angiogenic features and establishes the LMO2-STAT3 signaling axis as a therapeutic target in breast cancer metastasis.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Humans , Mice , Animals , Female , Breast Neoplasms/pathology , Lung Neoplasms/metabolism , Signal Transduction , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism
4.
Nat Commun ; 13(1): 6491, 2022 10 30.
Article in English | MEDLINE | ID: mdl-36310174

ABSTRACT

Sexually dimorphic tissues are formed by cells that are regulated by sex hormones. While a number of systemic hormones and transcription factors are known to regulate proliferation and differentiation of osteoblasts and osteoclasts, the mechanisms that determine sexually dimorphic differences in bone regeneration are unclear. To explore how sex hormones regulate bone regeneration, we compared bone fracture repair between adult male and female mice. We found that skeletal stem cell (SSC) mediated regeneration in female mice is dependent on estrogen signaling but SSCs from male mice do not exhibit similar estrogen responsiveness. Mechanistically, we found that estrogen acts directly on the SSC lineage in mice and humans by up-regulating multiple skeletogenic pathways and is necessary for the stem cell's ability to self- renew and differentiate. Our results also suggest a clinically applicable strategy to accelerate bone healing using localized estrogen hormone therapy.


Subject(s)
Osteoblasts , Stem Cells , Humans , Male , Female , Mice , Animals , Osteoblasts/metabolism , Cell Differentiation , Osteoclasts , Estrogens/pharmacology , Estrogens/metabolism
5.
J Gen Intern Med ; 37(11): 2868-2869, 2022 08.
Article in English | MEDLINE | ID: mdl-35581457
6.
Circ Res ; 130(10): 1510-1530, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35430876

ABSTRACT

BACKGROUND: Coronary artery disease is an incurable, life-threatening disease that was once considered primarily a disorder of lipid deposition. Coronary artery disease is now also characterized by chronic inflammation' notable for the buildup of atherosclerotic plaques containing immune cells in various states of activation and differentiation. Understanding how these immune cells contribute to disease progression may lead to the development of novel therapeutic strategies. METHODS: We used single-cell technology and in vitro assays to interrogate the immune microenvironment of human coronary atherosclerotic plaque at different stages of maturity. RESULTS: In addition to macrophages, we found a high proportion of αß T cells in the coronary plaques. Most of these T cells lack high expression of CCR7 and L-selectin, indicating that they are primarily antigen-experienced memory cells. Notably, nearly one-third of these cells express the HLA-DRA surface marker, signifying activation through their TCRs (T-cell receptors). Consistent with this, TCR repertoire analysis confirmed the presence of activated αß T cells (CD4

Subject(s)
Coronary Artery Disease , Plaque, Atherosclerotic , T-Lymphocytes , Antigens , Clone Cells/immunology , Coronary Artery Disease/immunology , Endothelial Cells , Epitopes , HLA-DR alpha-Chains , Humans , Lymphocyte Activation , Plaque, Atherosclerotic/immunology , T-Lymphocytes/immunology
7.
J Infect Dev Ctries ; 16(3): 402-408, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35404843

ABSTRACT

Coronaviruses have been responsible for the emergence of pathogenic human diseases in recent decades, especially the coronavirus disease of 2019 (COVID-19). Phylogenetic studies of RNA (ribonucleic acid) viruses suggest that most human coronaviruses originated in bats, which are suitable reservoir hosts for many zoonotic viruses because of their unique biological and physiological features. The generation of human pathogenic coronaviruses is a result of genetic adaptation in bats and/or intermediate hosts, leading to spillover events. Therefore, we propose that specifically reducing or disrupting persistent coronavirus infection in bats may consequently decrease the frequency of human coronavirus diseases. We suggest several strategies to achieve the aforementioned goal in bats, including vaccination and targeted delivery of molecular inhibitors, such as monoclonal antibodies, aptamers, antisense oligonucleotides, and siRNA by use of viral nanoparticles. Advances in global bat research with the aim of controlling coronavirus infection in these mammals are pivotal in enhancing human health worldwide.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , Phylogeny
8.
Nat Med ; 28(2): 353-362, 2022 02.
Article in English | MEDLINE | ID: mdl-35027754

ABSTRACT

Severe immune-related adverse events (irAEs) occur in up to 60% of patients with melanoma treated with immune checkpoint inhibitors (ICIs). However, it is unknown whether a common baseline immunological state precedes irAE development. Here we applied mass cytometry by time of flight, single-cell RNA sequencing, single-cell V(D)J sequencing, bulk RNA sequencing and bulk T cell receptor (TCR) sequencing to study peripheral blood samples from patients with melanoma treated with anti-PD-1 monotherapy or anti-PD-1 and anti-CTLA-4 combination ICIs. By analyzing 93 pre- and early on-ICI blood samples and 3 patient cohorts (n = 27, 26 and 18), we found that 2 pretreatment factors in circulation-activated CD4 memory T cell abundance and TCR diversity-are associated with severe irAE development regardless of organ system involvement. We also explored on-treatment changes in TCR clonality among patients receiving combination therapy and linked our findings to the severity and timing of irAE onset. These results demonstrate circulating T cell characteristics associated with ICI-induced toxicity, with implications for improved diagnostics and clinical management.


Subject(s)
Immune Checkpoint Inhibitors , Melanoma , Humans , Immune Checkpoint Inhibitors/adverse effects , Melanoma/drug therapy , Retrospective Studies , T-Lymphocytes
9.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: mdl-34620713

ABSTRACT

In the skin, tissue injury results in fibrosis in the form of scars composed of dense extracellular matrix deposited by fibroblasts. The therapeutic goal of regenerative wound healing has remained elusive, in part because principles of fibroblast programming and adaptive response to injury remain incompletely understood. Here, we present a multimodal -omics platform for the comprehensive study of cell populations in complex tissue, which has allowed us to characterize the cells involved in wound healing across both time and space. We employ a stented wound model that recapitulates human tissue repair kinetics and multiple Rainbow transgenic lines to precisely track fibroblast fate during the physiologic response to skin injury. Through integrated analysis of single cell chromatin landscapes and gene expression states, coupled with spatial transcriptomic profiling, we are able to impute fibroblast epigenomes with temporospatial resolution. This has allowed us to reveal potential mechanisms controlling fibroblast fate during migration, proliferation, and differentiation following skin injury, and thereby reexamine the canonical phases of wound healing. These findings have broad implications for the study of tissue repair in complex organ systems.


Subject(s)
Cicatrix/pathology , Fibroblasts/metabolism , Fibrosis/pathology , Skin/injuries , Wound Healing/physiology , Animals , Cell Differentiation , Cell Movement , Cell Proliferation , Extracellular Matrix/metabolism , Female , Mechanotransduction, Cellular/physiology , Mice , Mice, Inbred C57BL , Skin/metabolism
10.
Nature ; 597(7875): 256-262, 2021 09.
Article in English | MEDLINE | ID: mdl-34381212

ABSTRACT

Loss of skeletal integrity during ageing and disease is associated with an imbalance in the opposing actions of osteoblasts and osteoclasts1. Here we show that intrinsic ageing of skeletal stem cells (SSCs)2 in mice alters signalling in the bone marrow niche and skews the differentiation of bone and blood lineages, leading to fragile bones that regenerate poorly. Functionally, aged SSCs have a decreased bone- and cartilage-forming potential but produce more stromal lineages that express high levels of pro-inflammatory and pro-resorptive cytokines. Single-cell RNA-sequencing studies link the functional loss to a diminished transcriptomic diversity of SSCs in aged mice, which thereby contributes to the transformation of the bone marrow niche. Exposure to a youthful circulation through heterochronic parabiosis or systemic reconstitution with young haematopoietic stem cells did not reverse the diminished osteochondrogenic activity of aged SSCs, or improve bone mass or skeletal healing parameters in aged mice. Conversely, the aged SSC lineage promoted osteoclastic activity and myeloid skewing by haematopoietic stem and progenitor cells, suggesting that the ageing of SSCs is a driver of haematopoietic ageing. Deficient bone regeneration in aged mice could only be returned to youthful levels by applying a combinatorial treatment of BMP2 and a CSF1 antagonist locally to fractures, which reactivated aged SSCs and simultaneously ablated the inflammatory, pro-osteoclastic milieu. Our findings provide mechanistic insights into the complex, multifactorial mechanisms that underlie skeletal ageing and offer prospects for rejuvenating the aged skeletal system.


Subject(s)
Aging/pathology , Bone and Bones/pathology , Cellular Senescence , Inflammation/pathology , Stem Cell Niche , Stem Cells/pathology , Animals , Bone Morphogenetic Protein 2/metabolism , Bone Regeneration , Cell Lineage , Female , Fracture Healing , Hematopoiesis , Macrophage Colony-Stimulating Factor/metabolism , Male , Mice , Myeloid Cells/cytology , Osteoclasts/cytology , Rejuvenation
11.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Article in English | MEDLINE | ID: mdl-34244432

ABSTRACT

Natural killer (NK) cells comprise one subset of the innate lymphoid cell (ILC) family. Despite reported antitumor functions of NK cells, their tangible contribution to tumor control in humans remains controversial. This is due to incomplete understanding of the NK cell states within the tumor microenvironment (TME). Here, we demonstrate that peripheral circulating NK cells differentiate down two divergent pathways within the TME, resulting in different end states. One resembles intraepithelial ILC1s (ieILC1) and possesses potent in vivo antitumor activity. The other expresses genes associated with immune hyporesponsiveness and has poor antitumor functional capacity. Interleukin-15 (IL-15) and direct contact between the tumor cells and NK cells are required for the differentiation into CD49a+CD103+ cells, resembling ieILC1s. These data explain the similarity between ieILC1s and tissue-resident NK cells, provide insight into the origin of ieILC1s, and identify the ieILC1-like cell state within the TME to be the NK cell phenotype with the greatest antitumor activity. Because the proportions of the different ILC states vary between tumors, these findings provide a resource for the clinical study of innate immune responses against tumors and the design of novel therapy.


Subject(s)
Head and Neck Neoplasms/immunology , Immunity, Innate/immunology , Killer Cells, Natural/immunology , Lymphocytes/immunology , Tumor Microenvironment/immunology , Aged , Aged, 80 and over , Antigens, CD/metabolism , Antineoplastic Agents/metabolism , Cell Differentiation/immunology , Cell Line, Tumor , Female , Head and Neck Neoplasms/pathology , Humans , Interleukin-15/metabolism , Lymphocyte Activation/immunology , Male , Middle Aged , Nuclear Receptor Subfamily 4, Group A, Member 1 , Phenotype , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/pathology
12.
Science ; 371(6529)2021 02 05.
Article in English | MEDLINE | ID: mdl-33542111

ABSTRACT

During development, cells progress from a pluripotent state to a more restricted fate within a particular germ layer. However, cranial neural crest cells (CNCCs), a transient cell population that generates most of the craniofacial skeleton, have much broader differentiation potential than their ectodermal lineage of origin. Here, we identify a neuroepithelial precursor population characterized by expression of canonical pluripotency transcription factors that gives rise to CNCCs and is essential for craniofacial development. Pluripotency factor Oct4 is transiently reactivated in CNCCs and is required for the subsequent formation of ectomesenchyme. Furthermore, open chromatin landscapes of Oct4+ CNCC precursors resemble those of epiblast stem cells, with additional features suggestive of priming for mesenchymal programs. We propose that CNCCs expand their developmental potential through a transient reacquisition of molecular signatures of pluripotency.


Subject(s)
Neural Crest/embryology , Pluripotent Stem Cells/physiology , Animals , Cell Differentiation/genetics , Cell Movement , Embryo, Mammalian , Germ Layers/cytology , Mice , Neural Crest/cytology , Neural Crest/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Pluripotent Stem Cells/cytology , RNA-Seq , Transcription, Genetic , Transcriptome
13.
Elife ; 92020 11 25.
Article in English | MEDLINE | ID: mdl-33236985

ABSTRACT

The balance of hematopoietic stem cell (HSC) self-renewal and differentiation is critical for a healthy blood supply; imbalances underlie hematological diseases. The importance of HSCs and their progenitors have led to their extensive characterization at genomic and transcriptomic levels. However, the proteomics of hematopoiesis remains incompletely understood. Here we report a proteomics resource from mass spectrometry of mouse young adult and old adult mouse HSCs, multipotent progenitors and oligopotent progenitors; 12 cell types in total. We validated differential protein levels, including confirmation that Dnmt3a protein levels are undetected in young adult mouse HSCs until forced into cycle. Additionally, through integrating proteomics and RNA-sequencing datasets, we identified a subset of genes with apparent post-transcriptional repression in young adult mouse HSCs. In summary, we report proteomic coverage of young and old mouse HSCs and progenitors, with broader implications for understanding mechanisms for stem cell maintenance, niche interactions and fate determination.


Subject(s)
Aging/physiology , Gene Expression Regulation/physiology , Hematopoietic Stem Cells/metabolism , Proteomics , Animals , Mice , Mice, Inbred C57BL , Proteome , RNA Processing, Post-Transcriptional
14.
Nat Med ; 26(10): 1583-1592, 2020 10.
Article in English | MEDLINE | ID: mdl-32807933

ABSTRACT

Osteoarthritis (OA) is a degenerative disease resulting in irreversible, progressive destruction of articular cartilage1. The etiology of OA is complex and involves a variety of factors, including genetic predisposition, acute injury and chronic inflammation2-4. Here we investigate the ability of resident skeletal stem-cell (SSC) populations to regenerate cartilage in relation to age, a possible contributor to the development of osteoarthritis5-7. We demonstrate that aging is associated with progressive loss of SSCs and diminished chondrogenesis in the joints of both mice and humans. However, a local expansion of SSCs could still be triggered in the chondral surface of adult limb joints in mice by stimulating a regenerative response using microfracture (MF) surgery. Although MF-activated SSCs tended to form fibrous tissues, localized co-delivery of BMP2 and soluble VEGFR1 (sVEGFR1), a VEGF receptor antagonist, in a hydrogel skewed differentiation of MF-activated SSCs toward articular cartilage. These data indicate that following MF, a resident stem-cell population can be induced to generate cartilage for treatment of localized chondral disease in OA.


Subject(s)
Cartilage, Articular/physiology , Regeneration/physiology , Stem Cells/physiology , Adult , Animals , Cartilage, Articular/cytology , Cell Differentiation , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/physiology , Chondrogenesis/physiology , Fetal Tissue Transplantation , Fetus/cytology , Heterografts , Humans , Male , Mesenchymal Stem Cells/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Stem Cells/cytology , Tissue Engineering/methods
15.
Nat Commun ; 11(1): 4061, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32792541

ABSTRACT

Adhesions are fibrotic scars that form between abdominal organs following surgery or infection, and may cause bowel obstruction, chronic pain, or infertility. Our understanding of adhesion biology is limited, which explains the paucity of anti-adhesion treatments. Here we present a systematic analysis of mouse and human adhesion tissues. First, we show that adhesions derive primarily from the visceral peritoneum, consistent with our clinical experience that adhesions form primarily following laparotomy rather than laparoscopy. Second, adhesions are formed by poly-clonal proliferating tissue-resident fibroblasts. Third, using single cell RNA-sequencing, we identify heterogeneity among adhesion fibroblasts, which is more pronounced at early timepoints. Fourth, JUN promotes adhesion formation and results in upregulation of PDGFRA expression. With JUN suppression, adhesion formation is diminished. Our findings support JUN as a therapeutic target to prevent adhesions. An anti-JUN therapy that could be applied intra-operatively to prevent adhesion formation could dramatically improve the lives of surgical patients.


Subject(s)
Tissue Adhesions/metabolism , Tissue Adhesions/pathology , Animals , Benzophenones/pharmacology , CRISPR-Cas Systems , Cells, Cultured , Doxycycline/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Fluorescent Antibody Technique , Gastrointestinal Diseases/metabolism , Gastrointestinal Diseases/pathology , Humans , Immunohistochemistry , Isoxazoles/pharmacology , Liposomes/metabolism , Mice , NIH 3T3 Cells , Parabiosis , RNA, Messenger/metabolism , Tamoxifen/pharmacology
16.
Cell Stem Cell ; 27(2): 284-299.e8, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32693087

ABSTRACT

SMAD pathways govern epithelial proliferation, and transforming growth factor ß (TGF-ß and BMP signaling through SMAD members has distinct effects on mammary development and homeostasis. Here, we show that LEFTY1, a secreted inhibitor of NODAL/SMAD2 signaling, is produced by mammary progenitor cells and, concomitantly, suppresses SMAD2 and SMAD5 signaling to promote long-term proliferation of normal and malignant mammary epithelial cells. In contrast, BMP7, a NODAL antagonist with context-dependent functions, is produced by basal cells and restrains progenitor cell proliferation. In normal mouse epithelium, LEFTY1 expression in a subset of luminal cells and rare basal cells opposes BMP7 to promote ductal branching. LEFTY1 binds BMPR2 to suppress BMP7-induced activation of SMAD5, and this LEFTY1-BMPR2 interaction is specific to tumor-initiating cells in triple-negative breast cancer xenografts that rely on LEFTY1 for growth. These results suggest that LEFTY1 is an endogenous dual-SMAD inhibitor and that suppressing its function may represent a therapeutic vulnerability in breast cancer.


Subject(s)
Signal Transduction , Transforming Growth Factor beta , Animals , Carcinogenesis , Cell Transformation, Neoplastic , Mice
17.
Science ; 367(6476): 405-411, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31974247

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) is a powerful approach for reconstructing cellular differentiation trajectories. However, inferring both the state and direction of differentiation is challenging. Here, we demonstrate a simple, yet robust, determinant of developmental potential-the number of expressed genes per cell-and leverage this measure of transcriptional diversity to develop a computational framework (CytoTRACE) for predicting differentiation states from scRNA-seq data. When applied to diverse tissue types and organisms, CytoTRACE outperformed previous methods and nearly 19,000 annotated gene sets for resolving 52 experimentally determined developmental trajectories. Additionally, it facilitated the identification of quiescent stem cells and revealed genes that contribute to breast tumorigenesis. This study thus establishes a key RNA-based feature of developmental potential and a platform for delineation of cellular hierarchies.


Subject(s)
Cell Differentiation/genetics , Neoplasms/genetics , RNA, Small Cytoplasmic/genetics , RNA-Seq/methods , Single-Cell Analysis/methods , Transcription, Genetic , Animals , Base Sequence , Genetic Variation , Humans , Mice
18.
EMBO Rep ; 21(2): e47895, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31885181

ABSTRACT

While intrinsic changes in aging hematopoietic stem cells (HSCs) are well characterized, it remains unclear how extrinsic factors affect HSC aging. Here, we demonstrate that cells in the niche-endothelial cells (ECs) and CXCL12-abundant reticular cells (CARs)-highly express the heme-degrading enzyme, heme oxygenase 1 (HO-1), but then decrease its expression with age. HO-1-deficient animals (HO-1-/- ) have altered numbers of ECs and CARs that produce less hematopoietic factors. HSCs co-cultured in vitro with HO-1-/- mesenchymal stromal cells expand, but have altered kinetic of growth and differentiation of derived colonies. HSCs from young HO-1-/- animals have reduced quiescence and regenerative potential. Young HO-1-/- HSCs exhibit features of premature exhaustion on the transcriptional and functional level. HO-1+/+ HSCs transplanted into HO-1-/- recipients exhaust their regenerative potential early and do not reconstitute secondary recipients. In turn, transplantation of HO-1-/- HSCs to the HO-1+/+ recipients recovers the regenerative potential of HO-1-/- HSCs and reverses their transcriptional alterations. Thus, HSC-extrinsic activity of HO-1 prevents HSCs from premature exhaustion and may restore the function of aged HSCs.


Subject(s)
Heme Oxygenase-1 , Mesenchymal Stem Cells , Animals , Cell Differentiation , Endothelial Cells , Hematopoietic Stem Cells , Heme Oxygenase-1/genetics
19.
Proc Natl Acad Sci U S A ; 116(50): 25115-25125, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31754028

ABSTRACT

Hematopoietic stem cells (HSCs) self-renew and generate all blood cells. Recent studies with single cell transplants and lineage tracing suggest that adult HSCs are diverse in their reconstitution and lineage potentials. However, prospective isolation of these subpopulations has remained challenging. Here, we identify Neogenin-1 (NEO1) as a unique surface marker on a fraction of mouse HSCs labeled with Hoxb5, a specific reporter of long-term HSCs (LT-HSCs). We show that NEO1+Hoxb5+ LT-HSCs expand with age and respond to myeloablative stress in young mice while NEO1-Hoxb5+ LT-HSCs exhibit no significant change in number. Furthermore, NEO1+Hoxb5+ LT-HSCs are more often in the G2/S cell cycle phase compared to NEO1-Hoxb5+ LT-HSCs in both young and old bone marrow. Upon serial transplantation, NEO1+Hoxb5+ LT-HSCs exhibit myeloid-biased differentiation and reduced reconstitution while NEO1-Hoxb5+ LT-HSCs are lineage-balanced and stably reconstitute recipients. Gene expression analysis reveals erythroid and myeloid priming in the NEO1+ fraction and association of quiescence and self-renewal-related transcription factors with NEO1- LT-HSCs. Finally, transplanted NEO1+Hoxb5+ LT-HSCs rarely generate NEO1-Hoxb5+ LT-HSCs while NEO1-Hoxb5+ LT-HSCs repopulate both LT-HSC fractions. This supports a model in which dormant, balanced NEO1-Hoxb5+ LT-HSCs can hierarchically precede active, myeloid-biased NEO1+Hoxb5+ LT-HSCs.


Subject(s)
Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/physiology , Homeodomain Proteins/metabolism , Membrane Proteins/metabolism , Aging , Animals , Female , Hematopoietic Stem Cell Transplantation , Homeodomain Proteins/genetics , Membrane Proteins/genetics , Mice , Mice, Transgenic
20.
Nat Biotechnol ; 37(5): 531-539, 2019 05.
Article in English | MEDLINE | ID: mdl-30886438

ABSTRACT

Endogenous biomarkers remain at the forefront of early disease detection efforts, but many lack the sensitivities and specificities necessary to influence disease management. Here, we describe a cell-based in vivo sensor for highly sensitive early cancer detection. We engineer macrophages to produce a synthetic reporter on adopting an M2 tumor-associated metabolic profile by coupling luciferase expression to activation of the arginase-1 promoter. After adoptive transfer in colorectal and breast mouse tumor models, the engineered macrophages migrated to the tumors and activated arginase-1 so that they could be detected by bioluminescence imaging and luciferase measured in the blood. The macrophage sensor detected tumors as small as 25-50 mm3 by blood luciferase measurements, even in the presence of concomitant inflammation, and was more sensitive than clinically used protein and nucleic acid cancer biomarkers. Macrophage sensors also effectively tracked the immunological response in muscle and lung models of inflammation, suggesting the potential utility of this approach in disease states other than cancer.


Subject(s)
Arginase/blood , Early Detection of Cancer , Macrophages/immunology , Neoplasms/blood , Animals , Arginase/genetics , Arginase/immunology , Biomarkers, Tumor/blood , Cell Engineering , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Humans , Luciferases/blood , Luciferases/genetics , Luciferases/immunology , Mice , Neoplasms/immunology , Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...