Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829274

ABSTRACT

Baeyer-Villiger monooxygenases (BVMOs) play crucial roles in the core-structure modification of natural products. They catalyze lactone formation by selective oxygen insertion into a carbon-carbon bond adjacent to a carbonyl group (Baeyer-Villiger oxidation, BVO). The homologous bacterial BVMOs, BraC and PxaB, thereby process bicyclic dihydroindolizinone substrates originating from a bimodular nonribosomal peptide synthetase (BraB or PxaA). While both enzymes initially catalyze the formation of oxazepine-dione intermediates following the identical mechanism, the final natural product spectrum diverges. For the pathway involving BraC, the exclusive formation of lipocyclocarbamates, the brabantamides, was reported. The pathway utilizing PxaB solely produces pyrrolizidine alkaloids, the pyrrolizixenamides. Surprisingly, replacing pxaB within the pyrrolizixenamide biosynthetic pathway by braC does not change the product spectrum to brabantamides. Factors controlling this product selectivity have remained elusive. In this study, we set out to solve this puzzle by combining the total synthesis of crucial pathway intermediates and anticipated products with in-depth functional in vitro studies on both recombinant BVMOs. This work shows that the joint oxazepine-dione intermediate initially formed by both BVMOs leads to pyrrolizixenamides upon nonenzymatic hydrolysis, decarboxylative ring contraction, and dehydration. Brabantamide biosynthesis is enzyme-controlled, with BraC efficiently transforming all the accepted substrates into its cognate final product scaffold. PxaB, in contrast, shows only considerable activity toward brabantamide formation for the substrate analog with a natural brabantamide-type side chain structure, revealing substrate-controlled product selectivity.

2.
Commun Biol ; 7(1): 655, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806706

ABSTRACT

The gut microbiota influences human health and the development of chronic diseases. However, our understanding of potentially protective or harmful microbe-host interactions at the molecular level is still in its infancy. To gain further insights into the hidden gut metabolome and its impact, we identified a cryptic non-ribosomal peptide BGC in the genome of Bacillus cereus DSM 28590 from the mouse intestine ( www.dsmz.de/miBC ), which was predicted to encode a thiazol(in)e substructure. Cloning and heterologous expression of this BGC revealed that it produces bacillamide D. In-depth functional evaluation showed potent cytotoxicity and inhibition of cell migration using the human cell lines HCT116 and HEK293, which was validated using primary mouse organoids. This work establishes the bacillamides as selective cytotoxins from a bacterial gut isolate that affect mammalian cells. Our targeted structure-function-predictive approach is demonstrated to be a streamlined method to discover deleterious gut microbial metabolites with potential effects on human health.


Subject(s)
Bacillus cereus , Gastrointestinal Microbiome , Bacillus cereus/metabolism , Bacillus cereus/genetics , Animals , Mice , Humans , HEK293 Cells , Cytotoxins/metabolism , Cytotoxins/genetics , HCT116 Cells , Intestines/microbiology , Cell Movement , Organoids/metabolism
3.
Commun Chem ; 7(1): 39, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402292

ABSTRACT

The sorbicillinoid family is a large class of natural products known for their structural variety and strong, diverse biological activities. A special member of this family, sorbicillactone A, the first nitrogen-containing sorbicillinoid, exhibits potent anti-leukemic and anti-HIV activities and possesses a unique structure formed from sorbicillinol, alanine, and fumaric acid building blocks. To facilitate in-depth biological and structure-activity relationship studies of this promising natural product, we developed a chemoenzymatic approach that provides access to sorbicillactone A and several analogs with excellent yields under precise stereochemical control. The key steps of the highly convergent, stereoselective, and short route are the enantioselective oxidative dearomatization of sorbillin to sorbicillinol catalyzed by the enzyme SorbC and the subsequent Michael addition of a fumarylazlactone building block. Additionally, our synthetic findings and bioinformatic analysis suggest that sorbicillactone A is biosynthetically formed analogously.

4.
J Org Chem ; 88(19): 14184-14188, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37708429

ABSTRACT

The myxobacterial natural product myxocoumarin A from Stigmatella aurantiaca MYX-030 has remarkable antifungal activity against agriculturally relevant pathogens. To broaden the initial evaluation of its biological potential, we herein completed the first total synthesis of myxocoumarin A. This synthetic access facilitated stereochemical investigations on the natural product structure, revealing its (R)-configuration. Biological activity profiling showed a lack of activity against Candida spp. and Gram-negative bacteria but revealed strong antibiotic activities against Bacillus subtilis and Staphylococcus aureus, including MRSA.


Subject(s)
Anti-Infective Agents , Biological Products , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Antifungal Agents/chemistry , Anti-Bacterial Agents/chemistry
5.
ACS Infect Dis ; 9(10): 1941-1948, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37655776

ABSTRACT

The ambigols are cyanobacterial natural products characterized by three polychlorinated aromatic building blocks connected by biaryl and biaryl ether bridges. All ambigols known to date possess promising biological activities. Most significantly, ambigol A was reported to have antibacterial activity against Gram-positive bacteria, such as Bacillus megaterium and B. subtilis. We established a diverse compound library for in-depth biological evaluation building on our previous bio- and total synthetic research on this natural product family. To explore the antimicrobial potential in detail and to determine initial structure-activity relationships of this product class, a large set of dimeric and trimeric compounds were screened against selected bacterial and Candida target strains. Our results reveal exceptional antibiotic activity of the ambigols, especially against challenging clinical isolates.

6.
Commun Chem ; 6(1): 187, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37674031

ABSTRACT

The natural product class of the sorbicillinoids is composed of structurally diverse molecules with many strong, biomedically relevant biological activities. Owing to their complex structures, the synthesis of sorbicillinoids is a challenging task. Here we show the first total synthesis of the fungal sorbicillinoids spirosorbicillinols A-C. The convergent route comprises the chemo-enzymatic transformation of sorbicillin to the highly reactive sorbicillinol and the assembly of scytolide and isomers starting from shikimic and quinic acid analogs. The key step in the total synthesis is the fusion of both building blocks in a Diels-Alder cycloaddition leading to the straightforward formation of the characteristic sorbicillinoid bicyclo[2.2.2]octane backbone. This work provides unifying access to all natural spirosorbicillinols and unnatural diastereomers.

7.
Org Biomol Chem ; 21(23): 4893-4908, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37259568

ABSTRACT

Radiosumins are a structurally diverse family of low molecular weight natural products that are produced by cyanobacteria and exhibit potent serine protease inhibition. Members of this family are dipeptides characterized by the presence of two similar non-proteinogenic amino acids. Here we used a comparative bioinformatic analysis to identify radiosumin biosynthetic gene clusters from the genomes of 13 filamentous cyanobacteria. We used direct pathway cloning to capture and express the entire 16.8 kb radiosumin biosynthetic gene cluster from Dolichospermum planctonicum UHCC 0167 in Escherichia coli. Bioinformatic analysis demonstrates that radiosumins represent a new group of chorismate-derived non-aromatic secondary metabolites. High-resolution liquid chromatography-mass spectrometry, nuclear magnetic resonance spectroscopy and chemical degradation analysis revealed that cyanobacteria produce a cocktail of novel radiosumins. We report the chemical structure of radiosumin D, an N-methyl dipeptide, containing a special Aayp (2-amino-3-(4-amino-2-cyclohexen-1-ylidene) propionic acid) with R configuration that differs from radiosumin A-C, an N-Me derivative of Aayp (Amyp) and two acetyl groups. Radiosumin C inhibits all three human trypsin isoforms at micromolar concentrations with preference for trypsin-1 and -3 (IC50 values from 1.7 µM to >7.2 µM). These results provide a biosynthetic logic to explore the genetic and chemical diversity of the radiosumin family and suggest that these natural products may be a source of drug leads for selective human serine proteases inhibitors.


Subject(s)
Biological Products , Computational Biology , Humans , Trypsin/genetics , Trypsin/metabolism , Dipeptides/metabolism , Cloning, Molecular , Multigene Family , Biological Products/metabolism , Biosynthetic Pathways/genetics
8.
Nat Commun ; 14(1): 3658, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37339975

ABSTRACT

The fungal dioxygenase AsqJ catalyses the conversion of benzo[1,4]diazepine-2,5-diones into quinolone antibiotics. A second, alternative reaction pathway leads to a different biomedically important product class, the quinazolinones. Within this work, we explore the catalytic promiscuity of AsqJ by screening its activity across a broad range of functionalized substrates made accessible by solid-/liquid-phase peptide synthetic routes. These systematic investigations map the substrate tolerance of AsqJ within its two established pathways, revealing significant promiscuity, especially in the quinolone pathway. Most importantly, two further reactivities leading to new AsqJ product classes are discovered, thus significantly expanding the structural space accessible by this biosynthetic enzyme. Switching AsqJ product selectivity is achieved by subtle structural changes on the substrate, revealing a remarkable substrate-controlled product selectivity in enzyme catalysis. Our work paves the way for the biocatalytic synthesis of diverse biomedically important heterocyclic structural frameworks.


Subject(s)
Dioxygenases , Quinolones , Dioxygenases/metabolism , Biocatalysis , Catalysis , Anti-Bacterial Agents , Quinolones/metabolism
9.
Nat Prod Rep ; 40(1): 7-8, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36622035

ABSTRACT

Filamentous fungi are highly diverse eukaryotes that inhabit all known ecosystems on earth. Estimates suggest that more than 2 × 106 species are likely to exist, and analyses of typical fungal genomes suggest they harbour around 50 biosynthetic gene clusters on average. The biosynthetic potential of these organisms is thus vast. Fungi produce all the main classes of secondary metabolites, and numerous hybrid compounds. Many are highly useful in medicine such as the 'classic' special metabolites penicillins, cephalosporins, statins and mycophenolic acid, and new antimicrobial agents such as the pleuromutilins and enfumafungins that overcome specific patterns of resistance. Fungi differentiated from bacteria more than a billion years ago, so there has been plenty of time for uniquely fungal biosynthetic systems to evolve.


Subject(s)
Biological Products , Biological Products/metabolism , Ecosystem , Fungi/genetics , Fungi/metabolism , Secondary Metabolism/genetics , Genome, Fungal , Multigene Family
10.
ACS Synth Biol ; 11(10): 3493-3503, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36166626

ABSTRACT

Microginins are a large family of cyanobacterial lipopeptide protease inhibitors. A hybrid polyketide synthase/non-ribosomal peptide synthetase biosynthetic gene cluster (BGC) found in several microginin-producing strains─mic─was proposed to encode the production of microginins, based on bioinformatic analysis. Here, we explored a cyanobacterium, Microcystis aeruginosa LEGE 91341, which contains a mic BGC, to discover 12 new microginin variants. The new compounds contain uncommon amino acids, namely, homophenylalanine (Hphe), homotyrosine (Htyr), or methylproline, as well as a 3-aminodecanoic acid (Ada) residue, which in some variants was chlorinated at its terminal methyl group. We have used direct pathway cloning (DiPaC) to heterologously express the mic BGC from M. aeruginosa LEGE 91341 in Escherichia coli, which led to the production of several microginins. This proved that the mic BGC is, in fact, responsible for the biosynthesis of microginins and paves the way to accessing new variants from (meta)genome data or through pathway engineering.


Subject(s)
Cyanobacteria , Microcystis , Microcystis/genetics , Microcystis/chemistry , Microcystis/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Cyanobacteria/metabolism , Protease Inhibitors/metabolism , Lipopeptides/metabolism , Amino Acids/metabolism
11.
J Appl Microbiol ; 133(4): 2560-2568, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35880373

ABSTRACT

AIMS: Sequencing and genome analysis of two co-isolated streptomycetes, named BV410-1 and BV410-10, and the effect of their co-cultivation on the staurosporine production. METHODS AND RESULTS: Identification of two strains through genome sequencing and their separation using different growth media was conducted. Sequence analysis revealed that the genome of BV410-1 was 9.5 Mb, whilst that of BV410-10 was 7.1 Mb. AntiSMASH analysis identified 28 biosynthetic gene clusters (BGCs) from BV410-1, including that responsible for staurosporine biosynthesis, whilst 20 BGCs were identified from BV410-10. The addition of cell-free supernatant from BV410-10 monoculture to BV410-1 fermentations improved the staurosporine yield from 8.35 mg L-1 up to 15.85 mg L-1 , whilst BV410-10 monoculture ethyl acetate extract did not have the same effect. Also, there was no improvement in staurosporine production when artificial mixed cultures were created using three different BV410-1 and BV410-10 spore ratios. CONCLUSIONS: The growth of BV410-10 was inhibited when the two strains were grown together on agar plates. Culture supernatants of BV410-10 showed potential to stimulate staurosporine production in BV410-1, but overall co-cultivation attempts did not restore the previously reported yield of staurosporine produced by the original mixed isolate. SIGNIFICANCE AND IMPACT OF STUDY: This work confirmed complex relations between streptomycetes in soil that are difficult to recreate under the laboratory conditions. Also, mining of streptomycetes genomes that mainly produce known bioactive compounds could still be the fruitful approach in search for novel bioactive molecules.


Subject(s)
Streptomyces , Agar , Multigene Family , Soil , Staurosporine/pharmacology , Streptomyces/genetics
12.
Nat Chem Biol ; 18(6): 652-658, 2022 06.
Article in English | MEDLINE | ID: mdl-35618928

ABSTRACT

The γ-butyrolactone motif is found in many natural signaling molecules and other specialized metabolites. A prominent example is the potent aquatic phytotoxin cyanobacterin, which has a highly functionalized γ-butyrolactone core structure. The enzymatic machinery that assembles cyanobacterin and structurally related natural products (herein termed furanolides) has remained elusive for decades. Here, we elucidate the biosynthetic process of furanolide assembly. The cyanobacterin biosynthetic gene cluster was identified by targeted bioinformatic screening and validated by heterologous expression in Escherichia coli. Full functional evaluation of the recombinant key enzymes in vivo and in vitro, individually and in concert, provided in-depth mechanistic insights into a streamlined C-C bond-forming cascade that involves installation of compatible reactivity at seemingly unreactive Cα positions of amino acid precursors. Our work extends the biosynthetic and biocatalytic toolbox for γ-butyrolactone formation, provides a general paradigm for furanolide biosynthesis and sets the stage for their targeted discovery, biosynthetic engineering and enzymatic synthesis.


Subject(s)
4-Butyrolactone , Biological Products , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/metabolism , Biological Products/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Multigene Family
13.
Nat Chem Biol ; 18(5): 538-546, 2022 05.
Article in English | MEDLINE | ID: mdl-35314816

ABSTRACT

The marine microbial natural product salinosporamide A (marizomib) is a potent proteasome inhibitor currently in clinical trials for the treatment of brain cancer. Salinosporamide A is characterized by a complex and densely functionalized γ-lactam-ß-lactone bicyclic warhead, the assembly of which has long remained a biosynthetic mystery. Here, we report an enzymatic route to the salinosporamide core catalyzed by a standalone ketosynthase (KS), SalC. Chemoenzymatic synthesis of carrier protein-tethered substrates, as well as intact proteomics, allowed us to probe the reactivity of SalC and understand its role as an intramolecular aldolase/ß-lactone synthase with roles in both transacylation and bond-forming reactions. Additionally, we present the 2.85-Å SalC crystal structure that, combined with site-directed mutagenesis, allowed us to propose a bicyclization reaction mechanism. This work challenges our current understanding of the role of KS enzymes and establishes a basis for future efforts toward streamlined production of a clinically relevant chemotherapeutic.


Subject(s)
Biological Products , Lactams , Biological Products/pharmacology , Lactones/chemistry , Proteasome Inhibitors , Pyrroles/pharmacology
14.
Chemistry ; 28(32): e202200394, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35229915

ABSTRACT

The increasing emergence of resistances against established antibiotics is a substantial threat to human health. The discovery of new compounds with potent antibiotic activity is thus of utmost importance. Within this work, we identify strong antibiotic activity of the natural product myxocoumarin B from Stigmatella aurantiaca MYX-030 against a range of clinically relevant bacterial pathogens, including clinical isolates of MRSA. A focused library of structural analogs was synthesized to explore initial structure-activity relationships and to identify equipotent myxocoumarin derivatives devoid of the natural nitro substituent to significantly streamline synthetic access. The cytotoxicity of the myxocoumarins as well as their potential to cure bacterial infections in vivo was established using a zebrafish model system. Our results reveal the exceptional antibiotic activity of the myxocoumarin scaffold and hence its potential for the development of novel antibiotics.


Subject(s)
Biological Products , Methicillin-Resistant Staphylococcus aureus , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Structure-Activity Relationship , Zebrafish
15.
Chemistry ; 28(2): e202103389, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34725865

ABSTRACT

The arylomycin antibiotics are potent inhibitors of bacterial type I signal peptidase. These lipohexapeptides contain a biaryl structural motif reminiscent of glycopeptide antibiotics. We herein describe the functional and structural evaluation of AryC, the cytochrome P450 performing biaryl coupling in biosynthetic arylomycin assembly. Unlike its enzymatic counterparts in glycopeptide biosynthesis, AryC converts free substrates without the requirement of any protein interaction partner, likely enabled by a strongly hydrophobic cavity at the surface of AryC pointing to the substrate tunnel. This activity enables chemo-enzymatic assembly of arylomycin A2 that combines the advantages of liquid- and solid-phase peptide synthesis with late-stage enzymatic cross-coupling. The reactivity of AryC is unprecedented in cytochrome P450-mediated biaryl construction in non-ribosomal peptides, in which peptidyl carrier protein (PCP)-tethering so far was shown crucial both in vivo and in vitro.


Subject(s)
Carrier Proteins , Glycopeptides , Anti-Bacterial Agents , Cytochrome P-450 Enzyme System/metabolism , Oligopeptides
16.
Chemistry ; 28(2): e202104451, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34958155

ABSTRACT

Invited for the cover of this issue are Sabine Schneider, Tobias A. M. Gulder and co-workers at Technical University of Dresden, Technical University of Munich and Ludwig-Maximillians-University Munich. The image depicts the crystal structure of the cytochrome P450 AryC from arylomycin biosynthesis. Read the full text of the article at 10.1002/chem.202103389.


Subject(s)
Carrier Proteins , Cytochrome P-450 Enzyme System , Humans , Oligopeptides
17.
Nat Prod Rep ; 38(9): 1555-1566, 2021 09 23.
Article in English | MEDLINE | ID: mdl-33710214

ABSTRACT

Covering: up to the end of 2020Natural products bearing tetramic acid units as part of complex molecular architectures exhibit a broad range of potent biological activities. These compounds thus attract significant interest from both the biosynthetic and synthetic communities. Biosynthetically, most of the tetramic acids are derived from hybrid polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) machineries. To date, over 30 biosynthetic gene clusters (BGCs) involved in tetramate formation have been identified, from which different biosynthetic strategies evolved in Nature to assemble this intriguing structural unit were characterized. In this Highlight we focus on the biosynthetic concepts of tetramic acid formation and discuss the molecular mechanism towards selected representatives in detail, providing a systematic overview for the development of strategies for targeted tetramate genome mining and future applications of tetramate-forming biocatalysts for chemo-enzymatic synthesis.


Subject(s)
Biological Products/metabolism , Pyrrolidinones/metabolism , Multigene Family , Polyketide Synthases/metabolism
18.
Org Biomol Chem ; 19(10): 2302-2311, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33629091

ABSTRACT

The cyanobacterium Fischerella ambigua is a natural producer of polychlorinated aromatic compounds, the ambigols A-E. The biosynthetic gene cluster (BGC) of these highly halogenated triphenyls has been recently identified by heterologous expression. It consists of 10 genes named ab1-10. Two of the encoded enzymes, i.e. Ab2 and Ab3, were identified by in vitro and in vivo assays as cytochrome P450 enzymes responsible for biaryl and biaryl ether formation. The key substrate for these P450 enzymes is 2,4-dichlorophenol, which in turn is derived from the precursor 3-chloro-4-hydroxybenzoic acid. Here, the biosynthetic steps leading towards 3-chloro-4-hydroxybenzoic acid were investigated by in vitro assays. Ab7, an isoenzyme of a 3-deoxy-7-phosphoheptulonate (DAHP) synthase, is involved in chorismate biosynthesis by the shikimate pathway. Chorismate in turn is further converted by a dedicated chorismate lyase (Ab5) yielding 4-hydroxybenzoic acid (4-HBA). The stand alone adenylation domain Ab6 is necessary to activate 4-HBA, which is subsequently tethered to the acyl carrier protein (ACP) Ab8. The Ab8 bound substrate is chlorinated by Ab10 in meta position yielding 3-Cl-4-HBA, which is then transfered by the condensation (C) domain to the peptidyl carrier protein and released by the thioesterase (TE) domain of Ab9. The released product is then expected to be the dedicated substrate of the halogenase Ab1 producing the monomeric ambigol building block 2,4-dichlorophenol.


Subject(s)
Chlorophenols/metabolism , Parabens/metabolism , 3-Deoxy-7-Phosphoheptulonate Synthase/metabolism , Acyl Carrier Protein/metabolism , Bacterial Proteins/metabolism , Chorismic Acid/metabolism , Cyanobacteria/enzymology , Cyanobacteria/metabolism , Halogenation , Nucleotidyltransferases/metabolism , Oxidoreductases/metabolism , Oxo-Acid-Lyases/metabolism , Thiolester Hydrolases/metabolism
19.
Angew Chem Int Ed Engl ; 60(15): 8297-8302, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33411393

ABSTRACT

Previous studies showed that the FeII /α-ketoglutarate dependent dioxygenase AsqJ induces a skeletal rearrangement in viridicatin biosynthesis in Aspergillus nidulans, generating a quinolone scaffold from benzo[1,4]diazepine-2,5-dione substrates. We report that AsqJ catalyzes an additional, entirely different reaction, simply by a change in substituent in the benzodiazepinedione substrate. This new mechanism is established by substrate screening, application of functional probes, and computational analysis. AsqJ excises H2 CO from the heterocyclic ring structure of suitable benzo[1,4]diazepine-2,5-dione substrates to generate quinazolinones. This novel AsqJ catalysis pathway is governed by a single substituent within the complex substrate. This unique substrate-directed reactivity of AsqJ enables the targeted biocatalytic generation of either quinolones or quinazolinones, two alkaloid frameworks of exceptional biomedical relevance.


Subject(s)
Dioxygenases/metabolism , Quinazolinones/metabolism , Quinolones/metabolism , Aspergillus nidulans/enzymology , Biocatalysis , Molecular Structure , Quinazolinones/chemistry , Quinolones/chemistry
20.
Org Lett ; 23(1): 102-106, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33305960

ABSTRACT

The first total synthesis of all members of the cyanobacterial natural product class of the ambigols is described. Key steps of the synthetic strategy are the formation of sterically demanding mono- and bis-iodonium salts to install the required biaryl ether structural elements and Suzuki cross-coupling giving straightforward access to the biaryl bonds. The synthetic methods are also utilized to construct unnatural or hypothetical ambigols that are still awaiting discovery from Nature.


Subject(s)
Biological Products/chemical synthesis , Cyanobacteria/chemistry , Biological Products/chemistry , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...