Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Sci Transl Med ; 16(748): eadj4504, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776389

ABSTRACT

Despite the wide availability of several safe and effective vaccines that prevent severe COVID-19, the persistent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that can evade vaccine-elicited immunity remains a global health concern. In addition, the emergence of SARS-CoV-2 VOCs that can evade therapeutic monoclonal antibodies underscores the need for additional, variant-resistant treatment strategies. Here, we characterize the antiviral activity of GS-5245, obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved viral RNA-dependent RNA polymerase (RdRp). We show that GS-5245 is broadly potent in vitro against alphacoronavirus HCoV-NL63, SARS-CoV, SARS-CoV-related bat-CoV RsSHC014, Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 WA/1, and the highly transmissible SARS-CoV-2 BA.1 Omicron variant. Moreover, in mouse models of SARS-CoV, SARS-CoV-2 (WA/1 and Omicron B1.1.529), MERS-CoV, and bat-CoV RsSHC014 pathogenesis, we observed a dose-dependent reduction in viral replication, body weight loss, acute lung injury, and pulmonary function with GS-5245 therapy. Last, we demonstrate that a combination of GS-5245 and main protease (Mpro) inhibitor nirmatrelvir improved outcomes in vivo against SARS-CoV-2 compared with the single agents. Together, our data support the clinical evaluation of GS-5245 against coronaviruses that cause or have the potential to cause human disease.


Subject(s)
Antiviral Agents , Prodrugs , SARS-CoV-2 , Animals , SARS-CoV-2/drug effects , Prodrugs/pharmacology , Prodrugs/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Mice , Administration, Oral , Chlorocebus aethiops , Vero Cells , COVID-19 Drug Treatment , COVID-19/virology , Virus Replication/drug effects , Nucleosides/pharmacology , Nucleosides/therapeutic use , Nucleosides/chemistry , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Female , Disease Models, Animal
2.
Cell Rep ; 43(5): 114127, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38652660

ABSTRACT

Ebola virus (EBOV), a major global health concern, causes severe, often fatal EBOV disease (EVD) in humans. Host genetic variation plays a critical role, yet the identity of host susceptibility loci in mammals remains unknown. Using genetic reference populations, we generate an F2 mapping cohort to identify host susceptibility loci that regulate EVD. While disease-resistant mice display minimal pathogenesis, susceptible mice display severe liver pathology consistent with EVD-like disease and transcriptional signatures associated with inflammatory and liver metabolic processes. A significant quantitative trait locus (QTL) for virus RNA load in blood is identified in chromosome (chr)8, and a severe clinical disease and mortality QTL is mapped to chr7, which includes the Trim5 locus. Using knockout mice, we validate the Trim5 locus as one potential driver of liver failure and mortality after infection. The identification of susceptibility loci provides insight into molecular genetic mechanisms regulating EVD progression and severity, potentially informing therapeutics and vaccination strategies.


Subject(s)
Ebolavirus , Genetic Predisposition to Disease , Hemorrhagic Fever, Ebola , Quantitative Trait Loci , Animals , Hemorrhagic Fever, Ebola/virology , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/pathology , Quantitative Trait Loci/genetics , Ebolavirus/pathogenicity , Ebolavirus/genetics , Mice , Mice, Knockout , Chromosome Mapping , Liver/pathology , Liver/metabolism , Humans , Mice, Inbred C57BL , Female , Male
3.
J Virol ; 98(5): e0190323, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38593045

ABSTRACT

We developed a novel class of peptidomimetic inhibitors targeting several host cell human serine proteases, including transmembrane protease serine 2 (TMPRSS2), matriptase, and hepsin. TMPRSS2 is a membrane-associated protease that is highly expressed in the upper and lower respiratory tracts and is utilized by SARS-CoV-2 and other viruses to proteolytically process their glycoproteins, enabling host cell entry, replication, and dissemination of new virus particles. We have previously shown that compound MM3122 exhibited subnanomolar potency against all three proteases and displayed potent antiviral effects against SARS-CoV-2 in a cell viability assay. Herein, we demonstrate that MM3122 potently inhibits viral replication in human lung epithelial cells and is also effective against the EG.5.1 variant of SARS-CoV-2. Furthermore, we evaluated MM3122 in a mouse model of COVID-19 and demonstrated that MM3122 administered intraperitoneally (IP) before (prophylactic) or after (therapeutic) SARS-CoV-2 infection had significant protective effects against weight loss and lung congestion and reduced pathology. Amelioration of COVID-19 disease was associated with a reduction in proinflammatory cytokine and chemokine production after SARS-CoV-2 infection. Prophylactic, but not therapeutic, administration of MM3122 also reduced virus titers in the lungs of SARS-CoV-2-infected mice. Therefore, MM3122 is a promising lead candidate small-molecule drug for the treatment and prevention of infections caused by SARS-CoV-2 and other coronaviruses. IMPORTANCE: SARS-CoV-2 and other emerging RNA coronaviruses are a present and future threat in causing widespread endemic and pandemic infection and disease. In this paper, we have shown that the novel host cell protease inhibitor, MM3122, blocks SARS-CoV-2 viral replication and is efficacious as both a prophylactic and a therapeutic drug for the treatment of COVID-19 given intraperitoneally in mice. Targeting host proteins and pathways in antiviral therapy is an underexplored area of research, but this approach promises to avoid drug resistance by the virus, which is common in current antiviral treatments.


Subject(s)
Antiviral Agents , Benzothiazoles , COVID-19 Drug Treatment , Oligopeptides , SARS-CoV-2 , Serine Proteinase Inhibitors , Virus Replication , Animals , Female , Humans , Mice , Antiviral Agents/pharmacology , Chlorocebus aethiops , COVID-19/virology , Disease Models, Animal , Lung/virology , Lung/pathology , Lung/drug effects , Peptidomimetics/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/therapeutic use , Vero Cells , Virus Replication/drug effects , Oligopeptides/pharmacology , Benzothiazoles/pharmacology
4.
bioRxiv ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38405752

ABSTRACT

We have developed a novel class of peptidomimetic inhibitors targeting several host cell human serine proteases including transmembrane protease serine 2 (TMPRSS2), matriptase and hepsin. TMPRSS2 is a membrane associated protease which is highly expressed in the upper and lower respiratory tract and is utilized by SARS-CoV-2 and other viruses to proteolytically process their glycoproteins, enabling host cell receptor binding, entry, replication, and dissemination of new virion particles. We have previously shown that compound MM3122 exhibited sub nanomolar potency against all three proteases and displayed potent antiviral effects against SARS-CoV-2 in a cell-viability assay. Herein, we demonstrate that MM3122 potently inhibits viral replication in human lung epithelial cells and is also effective against the EG.5.1 variant of SARS-CoV-2. Further, we have evaluated MM3122 in a mouse model of COVID-19 and have demonstrated that MM3122 administered intraperitoneally (IP) before (prophylactic) or after (therapeutic) SARS-CoV-2 infection had significant protective effects against weight loss and lung congestion, and reduced pathology. Amelioration of COVID-19 disease was associated with a reduction in pro-inflammatory cytokines and chemokines production after SARS-CoV-2 infection. Prophylactic, but not therapeutic, administration of MM3122 also reduced virus titers in the lungs of SARS-CoV-2 infected mice. Therefore, MM3122 is a promising lead candidate small molecule drug for the treatment and prevention of infections caused by SARS-CoV-2 and other coronaviruses. IMPORTANCE: SARS-CoV-2 and other emerging RNA coronaviruses are a present and future threat in causing widespread endemic and pandemic infection and disease. In this paper, we have shown that the novel host-cell protease inhibitor, MM3122, blocks SARS-CoV-2 viral replication and is efficacious as both a prophylactic and therapeutic drug for the treatment of COVID-19 in mice. Targeting host proteins and pathways in antiviral therapy is an underexplored area of research but this approach promises to avoid drug resistance by the virus, which is common in current antiviral treatments.

5.
Virus Res ; 341: 199319, 2024 03.
Article in English | MEDLINE | ID: mdl-38224840

ABSTRACT

Following the emergence of B.1.1.529 Omicron, the SARS-CoV-2 virus evolved into a significant number of sublineage variants that possessed numerous mutations throughout the genome, but particularly within the spike glycoprotein (S) gene. For example, the BQ.1.1 and the XBB.1 and XBB.1.5 subvariants contained 34 and 41 mutations in S, respectively. However, these variants elicited largely replication only or mild disease phenotypes in mice. To better model pathogenic outcomes and measure countermeasure performance, we developed mouse adapted versions (BQ.1.1 MA; XBB.1 MA; XBB.1.5 MA) that reflect more pathogenic acute phase pulmonary disease symptoms of SARS-CoV-2, as well as derivative strains expressing nano-luciferase (nLuc) in place of ORF7 (BQ.1.1 nLuc; XBB.1 nLuc; XBB.1.5 nLuc). Amongst the mouse adapted (MA) viruses, a wide range of disease outcomes were observed including mortality, weight loss, lung dysfunction, and tissue viral loads in the lung and nasal turbinates. Intriguingly, XBB.1 MA and XBB.1.5 MA strains, which contained identical mutations throughout except at position F486S/P in S, exhibited divergent disease outcomes in mice (Ao et al., 2023). XBB.1.5 MA infection was associated with significant weight loss and ∼45 % mortality across two independent studies, while XBB.1 MA infected animals suffered from mild weight loss and only 10 % mortality across the same two independent studies. Additionally, the development and use of nanoluciferase expressing strains provided moderate throughput for live virus neutralization assays. The availability of small animal models for the assessment of Omicron VOC disease potential will enable refined capacity to evaluate the efficacy of on market and pre-clinical therapeutics and interventions.


Subject(s)
SARS-CoV-2 , Weight Loss , Animals , Mice , Mice, Inbred BALB C , Mutation , Phenotype
6.
Nat Immunol ; 25(1): 41-53, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38036767

ABSTRACT

Bacille Calmette-Guérin (BCG) vaccination can confer nonspecific protection against heterologous pathogens. However, the underlying mechanisms remain mysterious. We show that mice vaccinated intravenously with BCG exhibited reduced weight loss and/or improved viral clearance when challenged with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 B.1.351) or PR8 influenza. Protection was first evident between 14 and 21 d post-vaccination and lasted ∼3 months. Notably, BCG induced a biphasic innate response and robust antigen-specific type 1 helper T cell (TH1 cell) responses in the lungs. MyD88 signaling was essential for innate and TH1 cell responses, and protection against SARS-CoV-2. Depletion of CD4+ T cells or interferon (IFN)-γ activity before infection obliterated innate activation and protection. Single-cell and spatial transcriptomics revealed CD4-dependent expression of IFN-stimulated genes in lung myeloid and epithelial cells. Notably, BCG also induced protection against weight loss after mouse-adapted SARS-CoV-2 BA.5, SARS-CoV and SHC014 coronavirus infections. Thus, BCG elicits integrated organ immunity, where CD4+ T cells feed back on tissue myeloid and epithelial cells to imprint prolonged and broad innate antiviral resistance.


Subject(s)
Adaptive Immunity , BCG Vaccine , Animals , Mice , Humans , Feedback , Vaccination , Weight Loss , Antiviral Agents , Immunity, Innate
7.
Cell Rep ; 42(10): 113248, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37858337

ABSTRACT

The emergence of three highly pathogenic human coronaviruses-severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003, Middle Eastern respiratory syndrome (MERS)-CoV in 2012, and SARS-CoV-2 in 2019-underlines the need to develop broadly active vaccines against the Merbecovirus and Sarbecovirus betacoronavirus subgenera. While SARS-CoV-2 vaccines protect against severe COVID-19, they do not protect against other sarbecoviruses or merbecoviruses. Here, we vaccinate mice with a trivalent sortase-conjugate nanoparticle (scNP) vaccine containing the SARS-CoV-2, RsSHC014, and MERS-CoV receptor-binding domains (RBDs), which elicited live-virus neutralizing antibody responses. The trivalent RBD scNP elicited serum neutralizing antibodies against bat zoonotic Wuhan Institute of Virology-1 (WIV-1)-CoV, SARS-CoV, SARS-CoV-2 BA.1, SARS-CoV-2 XBB.1.5, and MERS-CoV live viruses. The monovalent SARS-CoV-2 RBD scNP vaccine only protected against Sarbecovirus challenge, whereas the trivalent RBD scNP vaccine protected against both Merbecovirus and Sarbecovirus challenge in highly pathogenic and lethal mouse models. This study demonstrates proof of concept for a single pan-sarbecovirus/pan-merbecovirus vaccine that protects against three highly pathogenic human coronaviruses spanning two betacoronavirus subgenera.


Subject(s)
Middle East Respiratory Syndrome Coronavirus , Severe acute respiratory syndrome-related coronavirus , Animals , Humans , Mice , COVID-19 Vaccines , Antibodies, Viral , Antibodies, Neutralizing , SARS-CoV-2
8.
bioRxiv ; 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37425890

ABSTRACT

Despite the wide availability of several safe and effective vaccines that can prevent severe COVID-19 disease, the emergence of SARS-CoV-2 variants of concern (VOC) that can partially evade vaccine immunity remains a global health concern. In addition, the emergence of highly mutated and neutralization-resistant SARS-CoV-2 VOCs such as BA.1 and BA.5 that can partially or fully evade (1) many therapeutic monoclonal antibodies in clinical use underlines the need for additional effective treatment strategies. Here, we characterize the antiviral activity of GS-5245, Obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved RNA-dependent viral RNA polymerase (RdRp). Importantly, we show that GS-5245 is broadly potent in vitro against alphacoronavirus HCoV-NL63, severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-related Bat-CoV RsSHC014, Middle East Respiratory Syndrome coronavirus (MERS-CoV), SARS-CoV-2 WA/1, and the highly transmissible SARS-CoV-2 BA.1 Omicron variant in vitro and highly effective as antiviral therapy in mouse models of SARS-CoV, SARS-CoV-2 (WA/1), MERS-CoV and Bat-CoV RsSHC014 pathogenesis. In all these models of divergent coronaviruses, we observed protection and/or significant reduction of disease metrics such as weight loss, lung viral replication, acute lung injury, and degradation in pulmonary function in GS-5245-treated mice compared to vehicle controls. Finally, we demonstrate that GS-5245 in combination with the main protease (Mpro) inhibitor nirmatrelvir had increased efficacy in vivo against SARS-CoV-2 compared to each single agent. Altogether, our data supports the continuing clinical evaluation of GS-5245 in humans infected with COVID-19, including as part of a combination antiviral therapy, especially in populations with the most urgent need for more efficacious and durable interventions.

9.
bioRxiv ; 2023 May 23.
Article in English | MEDLINE | ID: mdl-37293083

ABSTRACT

The emergence of three distinct highly pathogenic human coronaviruses - SARS-CoV in 2003, MERS-CoV in 2012, and SARS-CoV-2 in 2019 - underlines the need to develop broadly active vaccines against the Merbecovirus and Sarbecovirus betacoronavirus subgenera. While SARS-CoV-2 vaccines are highly protective against severe COVID-19 disease, they do not protect against other sarbecoviruses or merbecoviruses. Here, we vaccinate mice with a trivalent sortase-conjugate nanoparticle (scNP) vaccine containing the SARS-CoV-2, RsSHC014, and MERS-CoV receptor binding domains (RBDs), which elicited live-virus neutralizing antibody responses and broad protection. Specifically, a monovalent SARS-CoV-2 RBD scNP vaccine only protected against sarbecovirus challenge, whereas the trivalent RBD scNP vaccine protected against both merbecovirus and sarbecovirus challenge in highly pathogenic and lethal mouse models. Moreover, the trivalent RBD scNP elicited serum neutralizing antibodies against SARS-CoV, MERS-CoV and SARS-CoV-2 BA.1 live viruses. Our findings show that a trivalent RBD nanoparticle vaccine displaying merbecovirus and sarbecovirus immunogens elicits immunity that broadly protects mice against disease. This study demonstrates proof-of-concept for a single pan-betacoronavirus vaccine to protect against three highly pathogenic human coronaviruses spanning two betacoronavirus subgenera.

10.
J Med Chem ; 66(8): 5802-5819, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37040439

ABSTRACT

Early antiviral treatments, including intravenous remdesivir (RDV), reduce hospitalization and severe disease caused by COVID-19. An orally bioavailable RDV analog may facilitate earlier treatment of non-hospitalized COVID-19 patients. Here we describe the synthesis and evaluation of alkyl glyceryl ether phosphodiesters of GS-441524 (RVn), lysophospholipid analogs which allow for oral bioavailability and stability in plasma. Oral treatment of SARS-CoV-2-infected BALB/c mice with 1-O-octadecyl-2-O-benzyl-sn-glyceryl-3-phospho-RVn (60 mg/kg orally, once daily for 5 days starting 12h after infection) reduced lung viral load by 1.5 log10 units versus vehicle at day 2 and to below the limit of detection at day 5. Structure/activity evaluation of additional analogs that have hydrophobic ethers at the sn-2 of glycerol revealed improved in vitro antiviral activity by introduction of a 3-fluoro-4-methoxy-substituted benzyl or a 3- or 4-cyano-substituted benzyl. Collectively, our data support the development of RVn phospholipid prodrugs as oral antiviral agents for prevention and treatment of SARS-CoV-2 infections.


Subject(s)
Antiviral Agents , COVID-19 , Animals , Mice , SARS-CoV-2 , Phospholipids
11.
Cell Rep ; 42(4): 112326, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37000623

ABSTRACT

Group 2B ß-coronaviruses (sarbecoviruses) have caused regional and global epidemics in modern history. Here, we evaluate the mechanisms of cross-sarbecovirus protective immunity, currently less clear yet important for pan-sarbecovirus vaccine development, using a panel of alphavirus-vectored vaccines covering bat to human strains. While vaccination does not prevent virus replication, it protects against lethal heterologous disease outcomes in both severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and clade 2 bat sarbecovirus challenge models. The spike vaccines tested primarily elicit a highly S1-specific homologous neutralizing antibody response with no detectable cross-virus neutralization. Rather, non-neutralizing antibody functions, mechanistically linked to FcgR4 and spike S2, mediate cross-protection in wild-type mice. Protection is lost in FcR knockout mice, further supporting a model for non-neutralizing, protective antibodies. These data highlight the importance of FcR-mediated cross-protective immune responses in universal pan-sarbecovirus vaccine designs.


Subject(s)
Alphavirus , COVID-19 , Chiroptera , Severe acute respiratory syndrome-related coronavirus , Viral Vaccines , Humans , Animals , Mice , Antibodies, Viral , SARS-CoV-2 , COVID-19/prevention & control , Antibodies, Neutralizing , Vaccination
12.
PLoS Pathog ; 19(2): e1011168, 2023 02.
Article in English | MEDLINE | ID: mdl-36812267

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2), part of the renin-angiotensin system (RAS), serves as an entry point for SARS-CoV-2, leading to viral proliferation in permissive cell types. Using mouse lines in which the Ace2 locus has been humanized by syntenic replacement, we show that regulation of basal and interferon induced ACE2 expression, relative expression levels of different ACE2 transcripts, and sexual dimorphism in ACE2 expression are unique to each species, differ between tissues, and are determined by both intragenic and upstream promoter elements. Our results indicate that the higher levels of expression of ACE2 observed in the lungs of mice relative to humans may reflect the fact that the mouse promoter drives expression of ACE2 in populous airway club cells while the human promoter drives expression in alveolar type 2 (AT2) cells. In contrast to transgenic mice in which human ACE2 is expressed in ciliated cells under the control of the human FOXJ1 promoter, mice expressing ACE2 in club cells under the control of the endogenous Ace2 promoter show a robust immune response after infection with SARS-CoV-2, leading to rapid clearance of the virus. This supports a model in which differential expression of ACE2 determines which cell types in the lung are infected, and this in turn modulates the host response and outcome of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Receptors, Virus , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Mice, Transgenic , Receptors, Virus/genetics , SARS-CoV-2 , Viral Tropism
13.
bioRxiv ; 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36482964

ABSTRACT

Two group 2B ß-coronaviruses (sarbecoviruses) have caused regional and global epidemics in modern history. The mechanisms of cross protection driven by the sarbecovirus spike, a dominant immunogen, are less clear yet critically important for pan-sarbecovirus vaccine development. We evaluated the mechanisms of cross-sarbecovirus protective immunity using a panel of alphavirus-vectored vaccines covering bat to human strains. While vaccination did not prevent virus replication, it protected against lethal heterologous disease outcomes in both SARS-CoV-2 and clade 2 bat sarbecovirus HKU3-SRBD challenge models. The spike vaccines tested primarily elicited a highly S1-specific homologous neutralizing antibody response with no detectable cross-virus neutralization. We found non-neutralizing antibody functions that mediated cross protection in wild-type mice were mechanistically linked to FcgR4 and spike S2-binding antibodies. Protection was lost in FcR knockout mice, further supporting a model for non-neutralizing, protective antibodies. These data highlight the importance of FcR-mediated cross-protective immune responses in universal pan-sarbecovirus vaccine designs.

14.
Sci Transl Med ; 14(664): eabo5070, 2022 09 28.
Article in English | MEDLINE | ID: mdl-35857635

ABSTRACT

A subset of individuals who recover from coronavirus disease 2019 (COVID-19) develop post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (PASC), but the mechanistic basis of PASC-associated lung abnormalities suffers from a lack of longitudinal tissue samples. The mouse-adapted SARS-CoV-2 strain MA10 produces an acute respiratory distress syndrome in mice similar to humans. To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute to clinical recovery phases. At 15 to 120 days after virus clearance, pulmonary histologic findings included subpleural lesions composed of collagen, proliferative fibroblasts, and chronic inflammation, including tertiary lymphoid structures. Longitudinal spatial transcriptional profiling identified global reparative and fibrotic pathways dysregulated in diseased regions, similar to human COVID-19. Populations of alveolar intermediate cells, coupled with focal up-regulation of profibrotic markers, were identified in persistently diseased regions. Early intervention with antiviral EIDD-2801 reduced chronic disease, and early antifibrotic agent (nintedanib) intervention modified early disease severity. This murine model provides opportunities to identify pathways associated with persistent SARS-CoV-2 pulmonary disease and test countermeasures to ameliorate PASC.


Subject(s)
COVID-19 , Animals , Antiviral Agents , COVID-19/complications , Fibrosis , Humans , Lung/pathology , Mice , SARS-CoV-2
15.
mBio ; 13(4): e0145422, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35862771

ABSTRACT

Infectious diseases have shaped the human population genetic structure, and genetic variation influences the susceptibility to many viral diseases. However, a variety of challenges have made the implementation of traditional human Genome-wide Association Studies (GWAS) approaches to study these infectious outcomes challenging. In contrast, mouse models of infectious diseases provide an experimental control and precision, which facilitates analyses and mechanistic studies of the role of genetic variation on infection. Here we use a genetic mapping cross between two distinct Collaborative Cross mouse strains with respect to severe acute respiratory syndrome coronavirus (SARS-CoV) disease outcomes. We find several loci control differential disease outcome for a variety of traits in the context of SARS-CoV infection. Importantly, we identify a locus on mouse chromosome 9 that shows conserved synteny with a human GWAS locus for SARS-CoV-2 severe disease. We follow-up and confirm a role for this locus, and identify two candidate genes, CCR9 and CXCR6, that both play a key role in regulating the severity of SARS-CoV, SARS-CoV-2, and a distantly related bat sarbecovirus disease outcomes. As such we provide a template for using experimental mouse crosses to identify and characterize multitrait loci that regulate pathogenic infectious outcomes across species. IMPORTANCE Host genetic variation is an important determinant that predicts disease outcomes following infection. In the setting of highly pathogenic coronavirus infections genetic determinants underlying host susceptibility and mortality remain unclear. To elucidate the role of host genetic variation on sarbecovirus pathogenesis and disease outcomes, we utilized the Collaborative Cross (CC) mouse genetic reference population as a model to identify susceptibility alleles to SARS-CoV and SARS-CoV-2 infections. Our findings reveal that a multitrait loci found in chromosome 9 is an important regulator of sarbecovirus pathogenesis in mice. Within this locus, we identified and validated CCR9 and CXCR6 as important regulators of host disease outcomes. Specifically, both CCR9 and CXCR6 are protective against severe SARS-CoV, SARS-CoV-2, and SARS-related HKU3 virus disease in mice. This chromosome 9 multitrait locus may be important to help identify genes that regulate coronavirus disease outcomes in humans.


Subject(s)
COVID-19 , Communicable Diseases , Severe acute respiratory syndrome-related coronavirus , Virus Diseases , Animals , Collaborative Cross Mice , Genome-Wide Association Study , Humans , Mice , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/genetics
16.
bioRxiv ; 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35677067

ABSTRACT

Infectious diseases have shaped the human population genetic structure, and genetic variation influences the susceptibility to many viral diseases. However, a variety of challenges have made the implementation of traditional human Genome-wide Association Studies (GWAS) approaches to study these infectious outcomes challenging. In contrast, mouse models of infectious diseases provide an experimental control and precision, which facilitates analyses and mechanistic studies of the role of genetic variation on infection. Here we use a genetic mapping cross between two distinct Collaborative Cross mouse strains with respect to SARS-CoV disease outcomes. We find several loci control differential disease outcome for a variety of traits in the context of SARS-CoV infection. Importantly, we identify a locus on mouse Chromosome 9 that shows conserved synteny with a human GWAS locus for SARS-CoV-2 severe disease. We follow-up and confirm a role for this locus, and identify two candidate genes, CCR9 and CXCR6 that both play a key role in regulating the severity of SARS-CoV, SARS-CoV-2 and a distantly related bat sarbecovirus disease outcomes. As such we provide a template for using experimental mouse crosses to identify and characterize multitrait loci that regulate pathogenic infectious outcomes across species.

17.
Sci Transl Med ; 14(643): eabm3410, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35315683

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic remains uncontrolled despite the rapid rollout of safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, underscoring the need to develop highly effective antivirals. In the setting of waning immunity from infection and vaccination, breakthrough infections are becoming increasingly common and treatment options remain limited. In addition, the emergence of SARS-CoV-2 variants of concern, with their potential to escape neutralization by therapeutic monoclonal antibodies, emphasizes the need to develop second-generation oral antivirals targeting highly conserved viral proteins that can be rapidly deployed to outpatients. Here, we demonstrate the in vitro antiviral activity and in vivo therapeutic efficacy of GS-621763, an orally bioavailable prodrug of GS-441524, the parent nucleoside of remdesivir, which targets the highly conserved virus RNA-dependent RNA polymerase. GS-621763 exhibited antiviral activity against SARS-CoV-2 in lung cell lines and two different human primary lung cell culture systems. GS-621763 was also potently antiviral against a genetically unrelated emerging coronavirus, Middle East respiratory syndrome CoV (MERS-CoV). The dose-proportional pharmacokinetic profile observed after oral administration of GS-621763 translated to dose-dependent antiviral activity in mice infected with SARS-CoV-2. Therapeutic GS-621763 administration reduced viral load and lung pathology; treatment also improved pulmonary function in COVID-19 mouse model. A direct comparison of GS-621763 with molnupiravir, an oral nucleoside analog antiviral that has recently received EUA approval, proved both drugs to be similarly efficacious in mice. These data support the exploration of GS-441524 oral prodrugs for the treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Coronavirus Infections , Prodrugs , Adenosine/analogs & derivatives , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Humans , Mice , Nucleosides , Parents , Prodrugs/pharmacology , Prodrugs/therapeutic use , SARS-CoV-2
18.
bioRxiv ; 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35194605

ABSTRACT

COVID-19 survivors develop post-acute sequelae of SARS-CoV-2 (PASC), but the mechanistic basis of PASC-associated lung abnormalities suffers from a lack of longitudinal samples. Mouse-adapted SARS-CoV-2 MA10 produces an acute respiratory distress syndrome (ARDS) in mice similar to humans. To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute disease through clinical recovery. At 15-120 days post-virus clearance, histologic evaluation identified subpleural lesions containing collagen, proliferative fibroblasts, and chronic inflammation with tertiary lymphoid structures. Longitudinal spatial transcriptional profiling identified global reparative and fibrotic pathways dysregulated in diseased regions, similar to human COVID-19. Populations of alveolar intermediate cells, coupled with focal upregulation of pro-fibrotic markers, were identified in persistently diseased regions. Early intervention with antiviral EIDD-2801 reduced chronic disease, and early anti-fibrotic agent (nintedanib) intervention modified early disease severity. This murine model provides opportunities to identify pathways associated with persistent SARS-CoV-2 pulmonary disease and test countermeasures to ameliorate PASC.

19.
bioRxiv ; 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34545367

ABSTRACT

The COVID-19 pandemic remains uncontrolled despite the rapid rollout of safe and effective SARS-CoV-2 vaccines, underscoring the need to develop highly effective antivirals. In the setting of waning immunity from infection and vaccination, breakthrough infections are becoming increasingly common and treatment options remain limited. Additionally, the emergence of SARS-CoV-2 variants of concern with their potential to escape therapeutic monoclonal antibodies emphasizes the need to develop second-generation oral antivirals targeting highly conserved viral proteins that can be rapidly deployed to outpatients. Here, we demonstrate the in vitro antiviral activity and in vivo therapeutic efficacy of GS-621763, an orally bioavailable prodrug of GS-441524, the parental nucleoside of remdesivir, which targets the highly conserved RNA-dependent RNA polymerase. GS-621763 exhibited significant antiviral activity in lung cell lines and two different human primary lung cell culture systems. The dose-proportional pharmacokinetic profile observed after oral administration of GS-621763 translated to dose-dependent antiviral activity in mice infected with SARS-CoV-2. Therapeutic GS-621763 significantly reduced viral load, lung pathology, and improved pulmonary function in COVID-19 mouse model. A direct comparison of GS-621763 with molnupiravir, an oral nucleoside analog antiviral currently in human clinical trial, proved both drugs to be similarly efficacious. These data demonstrate that therapy with oral prodrugs of remdesivir can significantly improve outcomes in SARS-CoV-2 infected mice. Thus, GS-621763 supports the exploration of GS-441524 oral prodrugs for the treatment of COVID-19 in humans.

20.
Cell Rep ; 36(4): 109450, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34289384

ABSTRACT

Improving clinical care for individuals infected with SARS-CoV-2 variants is a global health priority. Small-molecule antivirals like remdesivir (RDV) and biologics such as human monoclonal antibodies (mAbs) have demonstrated therapeutic efficacy against SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19). It is not known whether combination RDV/mAb will improve outcomes over single-agent therapies or whether antibody therapies will remain efficacious against variants. Here, we show that a combination of two mAbs in clinical trials, C144 and C135, have potent antiviral effects against even when initiated 48 h after infection and have therapeutic efficacy in vivo against the B.1.351 variant of concern (VOC). Combining RDV and antibodies provided a modest improvement in outcomes compared with single agents. These data support the continued use of RDV to treat SARS-CoV-2 infections and the continued clinical development of the C144 and C135 antibody combination to treat patients infected with SARS-CoV-2 variants.


Subject(s)
Antibodies, Monoclonal/pharmacology , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Animals , Antibodies, Monoclonal/immunology , Antiviral Agents/pharmacology , Humans , Mice , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL