Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 14: 1265859, 2023.
Article in English | MEDLINE | ID: mdl-38075682

ABSTRACT

The two recombinant inbred line (RIL) populations developed by crossing Almaly × Avocet S (206 RILs) and Almaly × Anza (162 RILs) were used to detect the novel genomic regions associated with adult plant resistance (APR) and seedling or all-stage resistance (ASR) to yellow rust (YR) and leaf rust (LR). The quantitative trait loci (QTLs) were detected through multi-year phenotypic evaluations (2018-2020) and using high-throughput DArTseq genotyping technology. RILs exhibited significant genetic variation with p < 0.001, and the coefficient of variation ranged from 9.79% to 47.99% for both LR and YR in all Environments and stages of evaluations. The heritability is quite high and ranged between 0.47 and 0.98. We identified nine stable QTLs for YR APR on chromosomes 1B, 2A, 2B, 3D, and 4D and four stable QTLs for LR APR on chromosomes 2B, 3B, 4A, and 5A. Furthermore, in silico analysis revealed that the key putative candidate genes such as cytochrome P450, protein kinase-like domain superfamily, zinc-binding ribosomal protein, SANT/Myb domain, WRKY transcription factor, nucleotide sugar transporter, and NAC domain superfamily were in the QTL regions and probably involved in the regulation of host response toward pathogen infection. The stable QTLs identified in this study are useful for developing rust-resistant varieties through marker-assisted selection (MAS).

2.
Plants (Basel) ; 12(19)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37836211

ABSTRACT

Over the last decade, the significance of yellow rust caused by Puccinia striiformis (Pst) has substantially increased worldwide, including in Russia. The development and cultivation of resistant genotypes is the most efficient control method. The present study was conducted to explore the yellow rust resistance potential of modern common winter wheat cultivars included in the Russian Register of Breeding Achievements in 2019-2022 using the seedling tests with an array of Pst races and molecular markers linked with Yr resistance genes. Seventy-two winter wheat cultivars were inoculated with five Pst isolates differing in virulence and origin. Molecular markers were used to identify genes Yr2, Yr5, Yr7, Yr9, Yr10, Yr15, Yr17, Yr18, Yr24, Yr25 and Yr60. Thirteen cultivars were resistant to all Pst isolates. The genes Yr5, Yr10, Yr15 and Yr24 that are effective against all Russian Pst races in resistant cultivars were not found. Using molecular methods, gene Yr9 located in translocation 1BL.1RS was detected in 12 cultivars, gene Yr18 in 24, gene Yr17 in 3 and 1AL.1RS translocation with unknown Yr gene in 2. While these genes have lost effectiveness individually, they can still enhance genetic diversity and overall yellow rust resistance, whether used in combination with each other or alongside other Yr genes.

3.
Plants (Basel) ; 10(11)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34834861

ABSTRACT

Yellow (stripe) rust, caused by Puccinia striiformis Westend. (Pst), is a major disease of cereals worldwide. We studied Pst virulence phenotypes on Triticum aestivum, Triticum durum, and triticale in three geographically distant regions of the European part of Russia (Dagestan and Krasnodar in North Caucasus, and Northwest) with different climate and environmental conditions. Based on the set of twenty differential lines, a relatively high level of population diversity was determined with 67 different Pst pathotypes identified among 141 isolates. Only seven pathotypes were shared by at least two hosts or occurred in the different regions. No significant differentiation was found between regional Pst collections of pathotypes either from T. aestivum or from T. durum. A set of Pst pathotypes from triticale was subdivided into two groups. One of them was indistinguishable from most durum and common wheat pathotypes, whereas the second group differed greatly from all other pathotypes. All sampled Pst isolates were avirulent on lines with Yr5, Yr10, Yr15, and Yr24 genes. Significant variation in virulence frequency among all Pst collections was observed on lines containing Yr1, Yr3, Yr17, Yr27, and YrSp genes and cvs Strubes Dickkopf, Carstens V, and Nord Desprez. Relationships between Russian regional collections of Pst from wheat did not conform to those for P. triticina.

4.
Plants (Basel) ; 10(8)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34451545

ABSTRACT

Diseases of cereals caused by pathogenic fungi can significantly reduce crop yields. Many cultures are exposed to them. The disease is difficult to control on a large scale; thus, one of the relevant approaches is the crop field monitoring, which helps to identify the disease at an early stage and take measures to prevent its spread. One of the effective control methods is disease identification based on the analysis of digital images, with the possibility of obtaining them in field conditions, using mobile devices. In this work, we propose a method for the recognition of five fungal diseases of wheat shoots (leaf rust, stem rust, yellow rust, powdery mildew, and septoria), both separately and in case of multiple diseases, with the possibility of identifying the stage of plant development. A set of 2414 images of wheat fungi diseases (WFD2020) was generated, for which expert labeling was performed by the type of disease. More than 80% of the images in the dataset correspond to single disease labels (including seedlings), more than 12% are represented by healthy plants, and 6% of the images labeled are represented by multiple diseases. In the process of creating this set, a method was applied to reduce the degeneracy of the training data based on the image hashing algorithm. The disease-recognition algorithm is based on the convolutional neural network with the EfficientNet architecture. The best accuracy (0.942) was shown by a network with a training strategy based on augmentation and transfer of image styles. The recognition method was implemented as a bot on the Telegram platform, which allows users to assess plants by lesions in the field conditions.

5.
Plant Dis ; 105(5): 1495-1504, 2021 May.
Article in English | MEDLINE | ID: mdl-33797936

ABSTRACT

Variability of the Russian population of Puccinia triticina from durum wheat was studied with virulence and simple sequence repeat (SSR) markers. The pathogen was sampled during 2017 to 2019 in all regions with sizable durum wheat (Triticum durum) growing areas from winter (North Caucasus) and spring (Middle Volga, Ural, and West Siberia) wheat. A total of 474 isolates were tested on a set of 20 Lr-gene lines. Molecular genotypes for 105 selected isolates were determined at 11 SSR loci. Variable virulence/avirulence reaction was observed only on three Lr-gene lines, whereas just five SSR loci were polymorphic with two alleles at each. Seven different virulence phenotypes and 11 SSR genotypes were found among 474 and 105 isolates, respectively, indicating a very low variability of the pathogen. One virulence phenotype and three SSR genotypes occurred in all Russian regions. However, two phenotypes were specific to the European regions of Russia (North Caucasus and Middle Volga), while another two were found only in the Asian part of Russia (Ural and West Siberia). Significant differentiation between six populations of P. triticina from durum wheat in the Asian and European (mainly North Caucasus) regions was also shown with numerous metrics and approaches for data with and without clone correction. Relationships among the regional populations of P. triticina from durum wheat established with virulence phenotypes significantly associated with those for SSR genotypes and was similar to the relationships among the regional populations of the pathogen from common wheat.


Subject(s)
Puccinia , Triticum , Genotype , Plant Diseases , Russia
6.
Crop Prot ; 121: 7-10, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31274944

ABSTRACT

Climate change is leading to increased occurrence of and yield losses to wheat diseases. Managing these diseases by introducing new, effective and diverse resistance genes into cultivars represents an important component of sustainable wheat production. In 2016 and 2017 a set of primary hexaploid synthetic wheat was studied under high disease pressure: powdery mildew, leaf and stem rust in Omsk; Septoria tritici and S. nodorum in Moscow. A total of 28 synthetics (19 CIMMYT synthetics and 9 Japanese synthetics) were selected as having combined resistance to at least two diseases in both years of testing. Two synthetics (entries 13 and 18) originating from crosses between winter durum wheat Ukrainka odesskaya-1530.94 and various Aegilopes taushii accessions, and four synthetics (entries 20, 21, 23 and 24) from cross between Canadian durum wheat Langdon and Ae. taushii were resistant to all four pathogens. Pathological and molecular markers evaluation of resistance suggests presence of new genes and diverse types of resistance. The novel genetic sources of disease resistance identified in this study can be successfully utilized in wheat breeding.

SELECTION OF CITATIONS
SEARCH DETAIL
...