Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Vaccines (Basel) ; 12(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38400113

ABSTRACT

The emergence of SARS-CoV-2 mutant variants has posed a significant challenge to both the prevention and treatment of COVID-19 with anti-coronaviral neutralizing antibodies. The latest viral variants demonstrate pronounced resistance to the vast majority of human monoclonal antibodies raised against the ancestral Wuhan variant. Less is known about the susceptibility of the evolved virus to camelid nanobodies developed at the start of the pandemic. In this study, we compared nanobody repertoires raised in the same llama after immunization with Wuhan's RBD variant and after subsequent serial immunization with a variety of RBD variants, including that of SARS-CoV-1. We show that initial immunization induced highly potent nanobodies, which efficiently protected Syrian hamsters from infection with the ancestral Wuhan virus. These nanobodies, however, mostly lacked the activity against SARS-CoV-2 omicron-pseudotyped viruses. In contrast, serial immunization with different RBD variants resulted in the generation of nanobodies demonstrating a higher degree of somatic mutagenesis and a broad range of neutralization. Four nanobodies recognizing distinct epitopes were shown to potently neutralize a spectrum of omicron variants, including those of the XBB sublineage. Our data show that nanobodies broadly neutralizing SARS-CoV-2 variants may be readily induced by a serial variant RBD immunization.

2.
Viruses ; 15(12)2023 11 29.
Article in English | MEDLINE | ID: mdl-38140591

ABSTRACT

BACKGROUND: SARS-CoV-2 can enter the environment from the feces of COVID-19 patients and virus carriers through untreated sewage. The virus has shown the ability to adapt to a wide range of hosts, so the question of the possible involvement of aquafauna and animals of coastal ecosystems in maintaining its circulation remains open. METHODS: the aim of this work was to study the tropism of SARS-CoV-2 for cells of freshwater fish and reptiles, including those associated with aquatic and coastal ecosystems, and the effect of ambient temperature on this process. In a continuous cell culture FHM (fathead minnow) and diploid fibroblasts CGIB (silver carp), SARS-CoV-2 replication was not maintained at either 25 °C or 29 °C. At 29 °C, the continuous cell culture TH-1 (eastern box turtle) showed high susceptibility to SARS-CoV-2, comparable to Vero E6 (development of virus-induced cytopathic effect (CPE) and an infectious titer of 7.5 ± 0.17 log10 TCID50/mL on day 3 after infection), and primary fibroblasts CNI (Nile crocodile embryo) showed moderate susceptibility (no CPE, infectious titer 4.52 ± 0.14 log10 TCID50/mL on day 5 after infection). At 25 °C, SARS-CoV-2 infection did not develop in TH-1 and CNI. CONCLUSIONS: our results show the ability of SARS-CoV-2 to effectively replicate without adaptation in the cells of certain reptile species when the ambient temperature rises.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Chlorocebus aethiops , Humans , Vero Cells , Ecosystem , Cell Culture Techniques
3.
Viruses ; 14(9)2022 09 14.
Article in English | MEDLINE | ID: mdl-36146842

ABSTRACT

In this retrospective, single-center study, we conducted an analysis of 13,699 samples from different individuals obtained from the Federal Research Center of Fundamental and Translational Medicine, from 1 April to 30 May 2020 in Novosibirsk region (population 2.8 million people). We identified 6.49% positive for SARS-CoV-2 cases out of the total number of diagnostic tests, and 42% of them were from asymptomatic people. We also detected two asymptomatic people, who had no confirmed contact with patients with COVID-19. The highest percentage of positive samples was observed in the 80+ group (16.3%), while among the children and adults it did not exceed 8%. Among all the people tested, 2423 came from a total of 80 different destinations and only 27 of them were positive for SARS-CoV-2. Out of all the positive samples, 15 were taken for SARS-CoV-2 sequencing. According to the analysis of the genome sequences, the SARS-CoV-2 variants isolated in the Novosibirsk region at the beginning of the pandemic belonged to three phylogenetic lineages according to the Pangolin classification: B.1, B.1.1, and B.1.1.129. All Novosibirsk isolates contained the D614G substitution in the Spike protein, two isolates werecharacterized by an additional M153T mutation, and one isolate wascharacterized by the L5F mutation.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/epidemiology , Child , Genome, Viral , Genomics , Humans , Mutation , Pandemics , Phylogeny , Retrospective Studies , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
5.
Pathogens ; 10(11)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34832577

ABSTRACT

The COVID-19 pandemic, which began at the end of 2019 in Wuhan, has affected 220 countries and territories to date. In the present study, we studied humoral immunity in samples of the blood sera of COVID-19 convalescents of varying severity and patients who died due to this infection, using native SARS-CoV-2 and its individual recombinant proteins. The cross-reactivity with SARS-CoV (2002) was also assessed. We used infectious and inactivated SARS-CoV-2/human/RUS/Nsk-FRCFTM-1/2020 strain, inactivated SARS-CoV strain (strain Frankfurt 1, 2002), recombinant proteins, and blood sera of patients diagnosed with COVID-19. The blood sera from patients were analyzed by the Virus Neutralization test, Immunoblotting, and ELISA. The median values and mean ± SD of titers of specific and cross-reactive antibodies in blood sera tested in ELISA were mainly distributed in the following descending order: N > trimer S > RBD. ELISA and immunoblotting revealed a high cross-activity of antibodies specific to SARS-CoV-2 with the SARS-CoV antigen (2002), mainly with the N protein. The presence of antibodies specific to RBD corresponds with the data on the neutralizing activity of blood sera. According to the neutralization test in a number of cases, higher levels of antibodies that neutralize SARS-CoV-2 were detected in blood serum taken from patients several days before their death than in convalescents with a ranging disease severity. This high level of neutralizing antibodies specific to SARS-CoV-2 in the blood sera of patients who subsequently died in hospital from COVID-19 requires a thorough study of the role of humoral immunity as well as comorbidity and other factors affecting the humoral response in this disease.

6.
Cell Discov ; 7(1): 96, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34667147

ABSTRACT

In the absence of virus-targeting small-molecule drugs approved for the treatment and prevention of COVID-19, broadening the repertoire of potent SARS-CoV-2-neutralizing antibodies represents an important area of research in response to the ongoing pandemic. Systematic analysis of such antibodies and their combinations can be particularly instrumental for identification of candidates that may prove resistant to the emerging viral escape variants. Here, we isolated a panel of 23 RBD-specific human monoclonal antibodies from the B cells of convalescent patients. A surprisingly large proportion of such antibodies displayed potent virus-neutralizing activity both in vitro and in vivo. Four of the isolated nAbs can be categorized as ultrapotent with an apparent IC100 below 16 ng/mL. We show that individual nAbs as well as dual combinations thereof retain activity against currently circulating SARS-CoV-2 variants of concern (such as B.1.1.7, B.1.351, B.1.617, and C.37), as well as against other viral variants. When used as a prophylactics or therapeutics, these nAbs could potently suppress viral replication and prevent lung pathology in SARS-CoV-2-infected hamsters. Our data contribute to the rational development of oligoclonal therapeutic nAb cocktails mitigating the risk of SARS-CoV-2 escape.

7.
Microorganisms ; 9(4)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920551

ABSTRACT

Avian influenza viruses (AIVs) are maintained in wild bird reservoirs, particularly in mallard ducks and other waterfowl. Novel evolutionary lineages of AIV that arise through genetic drift or reassortment can spread with wild bird migrations to new regions, infect a wide variety of resident bird species, and spillover to domestic poultry. The vast continental reservoir of AIVs in Eurasia harbors a wide diversity of influenza subtypes, including both highly pathogenic (HP) and low pathogenic (LP) H7 AIV. The Caspian Sea region is positioned at the intersection of major migratory flyways connecting Central Asia, Europe, the Black and Mediterranean Sea regions and Africa and holds a rich wetland and avian ecology. To understand genetic reservoirs present in the Caspian Sea region, we collected 559 cloacal swabs from Anseriformes and other species during the annual autumn migration periods in 2017 and 2018. We isolated two novel H7N3 LPAIV from mallard ducks whose H7 hemagglutinin (HA) gene was phylogenetically related to contemporaneous strains from distant Mongolia, and more closely Georgia and Ukraine, and predated the spread of this H7 LPAIV sublineage into East Asia in 2019. The N3 neuraminidase gene and internal genes were prototypical of AIV widely dispersed in wild bird reservoirs sampled along flyways connected to the Caspian region. The polymerase and nucleoprotein segments clustered with contemporaneous H5 HPAI (clade 2.3.4.4b) isolates, suggesting the wide dispersal of H7 LPAIV and the potential of this subtype for reassortment. These findings highlight the need for deeper surveillance of AIV in wild birds to better understand the extent of infection spread and evolution along spatial and temporal flyways in Eurasia.

8.
Viruses ; 13(4)2021 03 25.
Article in English | MEDLINE | ID: mdl-33806229

ABSTRACT

The results of experimental and clinical trials of the agents based on oncolytic Newcastle disease virus (NDV) strains provided hope for the development of virotherapy as a promising method for treating human tumors. However, the mechanism of the antitumor effect of NDV and realization of its cytotoxic potential in a cancer cell remains to be elucidated. In the current work, we have studied the antitumor effect of NDV in a syngeneic model of mouse Krebs-2 carcinoma treated with intratumoral injections of a wild-type strain NDV/Altai/pigeon/770/2011. Virological methods were used for preparation of a virus-containing sample. Colorimetric MTS assay was used to assess the viability of Krebs-2 tumor cells infected with a viral strain in vitro. In vivo virotherapy was performed in eight-week-old male BALB/c mice treated with serial intratumoral injections of NDV in an experimental model of Krebs-2 solid carcinoma. Changes in the tumor nodes of Krebs-2 carcinoma after virotherapy were visualized by MRI and immunohistological staining. Light microscopy examination, immunohistochemical and morphometric analyses have shown that intratumoral viral injections contribute to the inhibition of tumor growth, appearance of necrosis-like changes in the tumor tissue and the antiangiogenic effect of the virus. It has been established that a course of intratumoral virotherapy with NDV/Altai/pigeon/770/2011 strain in a mouse Krebs-2 carcinoma resulted in increased destructive changes in the tumor tissue, in the volume density of necrotic foci and numerical density of endothelial cells expressing CD34 and VEGFR. These results indicate that intratumoral NDV injection reduces tumor progression of an aggressive tumor.


Subject(s)
Antineoplastic Agents/administration & dosage , Carcinoma/therapy , Endothelial Cells/virology , Newcastle disease virus/physiology , Oncolytic Virotherapy/methods , Oncolytic Viruses/physiology , Animals , Cell Line, Tumor , Injections, Intralesional , Male , Mice , Mice, Inbred BALB C , Pilot Projects
10.
Sci Bull (Beijing) ; 66(19): 2014-2024, 2021 10 15.
Article in English | MEDLINE | ID: mdl-36654171

ABSTRACT

Migratory birds are considered natural reservoirs of avian influenza A viruses (AIVs). To further our viral ecology knowledge and understand the subsequent risk posed by wild birds, we conducted a 4-year surveillance study of AIVs in the bird wintering wetlands of the Yangtze River, China. We collected over 8000 samples and isolated 122 AIV strains. Analyses were then carried out with 108 novel sequenced genomes and data were deposited in GISAID and other public databases. The results showed that the Yangtze River wintering wetlands functioned as a mixing ground, where various subtypes of AIVs were detected harboring a high diversity of nucleotide sequences; moreover, a portion of AIV gene segments were persistent inter-seasonally. Phylogenetic incongruence presented complex reassortment events and distinct patterns among various subtypes. In addition, we observed that viral gene segments in wintering wetlands were closely related to known North American isolates, indicating that intercontinental gene flow occurred. Notably, highly pathogenic H5 and low pathogenic H9 viruses, which usually circulate in poultry, were found to have crossed the poultry/wild bird interface, with the viruses introduced to wintering birds. Overall, this study represented the largest AIV surveillance effort of wild birds within the Yangtze River wintering wetlands. Surveillance data highlighted the important role of wintering wild birds in the ecology of AIVs and may enable future early warnings of novel AIV emergence.


Subject(s)
Influenza A virus , Influenza in Birds , Animals , Phylogeny , Wetlands , Rivers , Influenza in Birds/epidemiology , Birds , Influenza A virus/genetics , Animals, Wild
11.
Nat Commun ; 11(1): 5909, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33219213

ABSTRACT

We have surveyed avian influenza virus (AIV) genomes from live poultry markets within China since 2014. Here we present a total of 16,091 samples that were collected from May 2016 to February 2019 in 23 provinces and municipalities in China. We identify 2048 AIV-positive samples and perform next generation sequencing. AIV-positive rates (12.73%) from samples had decreased substantially since 2016, compared to that during 2014-2016 (26.90%). Additionally, H9N2 has replaced H5N6 and H7N9 as the dominant AIV subtype in both chickens and ducks. Notably, novel reassortants and variants continually emerged and disseminated in avian populations, including H7N3, H9N9, H9N6 and H5N6 variants. Importantly, almost all of the H9 AIVs and many H7N9 and H6N2 strains prefer human-type receptors, posing an increased risk for human infections. In summary, our nation-wide surveillance highlights substantial changes in the circulation of AIVs since 2016, which greatly impacts the prevention and control of AIVs in China and worldwide.


Subject(s)
Influenza A virus , Influenza in Birds/virology , Poultry/virology , Animals , Birds , Chickens/virology , China/epidemiology , Ducks/virology , Genome, Viral , Humans , Influenza A Virus, H7N3 Subtype/genetics , Influenza A Virus, H7N3 Subtype/isolation & purification , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/isolation & purification , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/isolation & purification , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza in Birds/epidemiology , Influenza in Birds/prevention & control , Influenza, Human/virology , Phylogeny , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification
12.
Sci Rep ; 10(1): 16817, 2020 10 08.
Article in English | MEDLINE | ID: mdl-33033298

ABSTRACT

Avian Influenza (AI) is a complex but still poorly understood disease; specifically when it comes to reservoirs, co-infections, connectedness and wider landscape perspectives. Low pathogenic (Low-path LP) AI in chickens caused by less virulent strains of AI viruses (AIVs)-when compared with highly pathogenic AIVs (HPAIVs)-are not even well-described yet or known how they contribute to wider AI and immune system issues. Co-circulation of LPAIVs with HPAIVs suggests their interactions in their ecological aspects. Here we show for the Pacific Rim an international approach how to data mine and model-predict LP AI and its ecological niche with machine learning and open access data sets and geographic information systems (GIS) on a 5 km pixel size for best-possible inference. This is based on the best-available data on the issue (~ 40,827 records of lab-analyzed field data from Japan, Russia, Vietnam, Mongolia, Alaska and Influenza Research Database (IRD) and U.S. Department of Agriculture (USDA) database sets, as well as 19 GIS data layers). We sampled 157 hosts and 110 low-path AIVs with 32 species as drivers. The prevalence across low-path AIV subtypes is dominated by Muscovy ducks, Mallards, Whistling Swans and gulls also emphasizing industrial impacts for the human-dominated wildlife contact zone. This investigation sets a good precedent for the study of reservoirs, big data mining, predictions and subsequent outbreaks of HPAI and other pandemics.


Subject(s)
Birds/virology , Data Mining , Disease Reservoirs , Influenza in Birds/epidemiology , Animals , Chickens/virology , Data Mining/methods , Datasets as Topic , Disease Reservoirs/statistics & numerical data , Disease Reservoirs/virology , Ducks/virology , Forecasting , Influenza in Birds/virology , Models, Statistical , Orthomyxoviridae/pathogenicity , Pacific Ocean , Prevalence
13.
Microbiol Resour Announc ; 8(50)2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31831606

ABSTRACT

This work describes the nearly complete genome sequence of Newcastle disease virus (NDV) strain NDV/Novosibirsk/garganey/27/2014, which was isolated from a wild garganey in western Siberia, Russia. The NDV strain was classified as belonging to class II of genotype I and was identified as having recent common ancestry with isolates from wild and domestic birds in China and South Korea.

15.
J Vet Med Sci ; 79(8): 1461-1465, 2017 Aug 18.
Article in English | MEDLINE | ID: mdl-28690288

ABSTRACT

Thirty-two muskrats (Ondatra zibethicus) were captured for surveillance of avian influenza virus in wild waterfowl and mammals near Lake Chany, Western Siberia, Russia. A/muskrat/Russia/63/2014 (H2N2) was isolated from an apparently healthy muskrat using chicken embryos. Based on phylogenetic analysis, the hemagglutinin and neuraminidase genes of this isolate were classified into the Eurasian avian-like influenza virus clade and closely related to low pathogenic avian influenza viruses (LPAIVs) isolated from wild water birds in Italy and Sweden, respectively. Other internal genes were also closely related to LPAIVs isolated from Eurasian wild water birds. Results suggest that interspecies transmission of LPAIVs from wild water birds to semiaquatic mammals occurs, facilitating the spread and evolution of LPAIVs in wetland areas of Western Siberia.


Subject(s)
Arvicolinae/virology , Influenza A Virus, H2N2 Subtype/genetics , Orthomyxoviridae Infections/veterinary , Animals , Influenza A Virus, H2N2 Subtype/isolation & purification , Orthomyxoviridae Infections/epidemiology , Phylogeny , Siberia/epidemiology
16.
Toxicol Res (Camb) ; 6(4): 554-560, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-30090524

ABSTRACT

The octahedral rhenium cluster compound Na2H8[{Re6Se8}(P(C2H4CONH2)(C2H4COO)2)6] has recently emerged as a very promising X-ray contrast agent for biomedical applications. However, the synthesis of this compound is rather challenging due to the difficulty in controlling the hydrolysis of the initial P(C2H4CN)3 ligand during the reaction process. Therefore, in this report we compare the in vitro and in vivo toxicity of Na2H8[{Re6Se8}(P(C2H4CONH2)(C2H4COO)2)6] with those of related compounds featuring the fully hydrolysed form of the phosphine ligand, namely Na2H14[{Re6Q8}(P(C2H4COO)3)6] (Q = S or Se). Our results demonstrate that the cytotoxicity and acute in vivo toxicity of the complex Na2H8[{Re6Se8}(P(C2H4CONH2)(C2H4COO)2)6] solutions were considerably lower than those of compounds with the fully hydrolysed ligand P(C2H4COOH)3. Such behavior can be explained by the higher osmolality of Na2H14[{Re6Q8}(P(C2H4COO)3)6] versus Na2H8[{Re6Se8}(P(C2H4CONH2)(C2H4COO)2)6].

17.
J Vet Sci ; 17(2): 179-88, 2016 Jun 30.
Article in English | MEDLINE | ID: mdl-26243601

ABSTRACT

During 2006, H5N1 HPAI caused an epizootic in wild birds, resulting in a die-off of Laridae in the Novosibirsk region at Chany Lake. In the present study, we infected common gulls (Larus canus) with a high dose of the H5N1 HPAI virus isolated from a common gull to determine if severe disease could be induced over the 28 day experimental period. Moderate clinical signs including diarrhea, conjunctivitis, respiratory distress and neurological signs were observed in virus-inoculated birds, and 50% died. The most common microscopic lesions observed were necrosis of the pancreas, mild encephalitis, mild myocarditis, liver parenchymal hemorrhages, lymphocytic hepatitis, parabronchi lumen hemorrhages and interstitial pneumonia. High viral titers were shed from the oropharyngeal route and virus was still detected in one bird at 25 days after infection. In the cloaca, the virus was detected sporadically in lower titers. The virus was transmitted to direct contact gulls. Thus, infected gulls can pose a significant risk of H5N1 HPAIV transmission to other wild migratory waterfowl and pose a risk to more susceptible poultry species. These findings have important implications regarding the mode of transmission and potential risks of H5N1 HPAI spread by gulls.


Subject(s)
Charadriiformes , Influenza A Virus, H5N1 Subtype/physiology , Influenza in Birds/pathology , Influenza in Birds/virology , Animals , Influenza in Birds/mortality , Influenza in Birds/transmission , Morbidity , Tissue Distribution , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL
...