Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
ACS Nano ; 18(33): 22181-22193, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39105751

ABSTRACT

Nanoparticle-mediated mRNA delivery has emerged as a promising therapeutic modality, but its growth is still limited by the discovery and optimization of effective and well-tolerated delivery strategies. Lipid nanoparticles containing charged or ionizable lipids are an emerging standard for in vivo mRNA delivery, so creating facile, tunable strategies to synthesize these key lipid-like molecules is essential to advance the field. Here, we generate a library of N-substituted glycine oligomers, peptoids, and undertake a multistage down-selection process to identify lead candidate peptoids as the ionizable component in our Nutshell nanoparticle platform. First, we identify a promising peptoid structural motif by clustering a library of >200 molecules based on predicted physical properties and evaluate members of each cluster for reporter gene expression in vivo. Then, the lead peptoid motif is optimized using design of experiments methodology to explore variations on the charged and lipophilic portions of the peptoid, facilitating the discovery of trends between structural elements and nanoparticle properties. We further demonstrate that peptoid-based Nutshells leads to expression of therapeutically relevant levels of an anti-respiratory syncytial virus antibody in mice with minimal tolerability concerns or induced immune responses compared to benchmark ionizable lipid, DLin-MC3-DMA. Through this work, we present peptoid-based nanoparticles as a tunable delivery platform that can be optimized toward a range of therapeutic programs.


Subject(s)
Nanoparticles , Peptoids , RNA, Messenger , Peptoids/chemistry , Nanoparticles/chemistry , Animals , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Humans , Respiratory Syncytial Viruses , Lipids/chemistry
2.
Mar Pollut Bull ; 205: 116594, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38875967

ABSTRACT

Plastic litter affects coastal and marine ecosystems globally. This study represents the first record of pyroplastics and plasticrust in the beaches of Tamil Nadu, India. All samples were FTIR spectroscopically examined to confirm the polymer composition of the suspected plastics. The 16 plastic formations were found in TamilNadu, including six plastiglomerates nine pyroplastics and one plasticrust. Five types of polymers (PET, PP, PVC, PA, and PE) were found on the plastic matrices. The study also revealed that pyroplastics and plasticrust formed by degradation of plastics through weathering in the coastal environment. The present study also found that four types of marine fouling organisms such as oyster larvae, bryozoan, barnacle and polychaete worm were encrusted on the two pyroplastics. The emergence of these new forms of plastic raises concerns about their interactions with the environment and biota.


Subject(s)
Environmental Monitoring , Plastics , India , Plastics/analysis , Animals , Water Pollutants, Chemical/analysis , Polychaeta , Aquatic Organisms , Polymers/analysis
4.
Mar Pollut Bull ; 195: 115530, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37717497

ABSTRACT

Cigarette butts pose a significant challenge in managing solid litter, with an estimated 4.5 trillion of them being discarded into the environment annually. This study investigated the pollution of eleven beaches along the Moroccan Mediterranean by cigarette butts compared to other types of marine litter between 2018 and 2023. Sampling was conducted using the visual survey technique according to a standardized protocol. A total of 50, 575 items were collected with cigarette butts (14.62 %) and plastic caps/lids drinks (10.93 %) being the most common. Our survey of eleven beaches revealed 7395 cigarette butts, giving an average density of 0.06/m2 comparable to other countries in the Mediterranean. The analysis of the results shows significant differences in the abundance cigarette butts according to the beach typology, seasonality, sediment type, and number of beach users. Moreover, the study discovered a decrease in beach pollution during the COVID-19 pandemic lockdown, resulting in less litter collected compared to pre- and post-pandemic periods. The Cigarette Butt Pollution Index was categorized as very low pollution in M'diq and Kaa Asrass, low pollution in Ksar Sghir, Fnideq, Amsa, Oued Laou, significant pollution in Martil and Nador and sever pollution in Saidia and Sababia. The CBPI was higher during summer and winter, significantly associated with the density levels of beach users. The study recommends immediate action by the local administration to prevent the potential pollution of groundwater and sand by toxic substances leached from cigarette butts.

5.
Neuroradiol J ; 36(3): 297-304, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36170618

ABSTRACT

Neonatal strokes constitute a major cause of pediatric mortality and morbidity. Neuroimaging helps in its diagnosis as well as prognostication. However, advanced imaging, including magnetic resonance imaging (MRI), carries multiple challenges. Limited data exists in the literature on imaging-based predictors of neurological outcomes in neonatal stroke in the Indian population. In this study, we reviewed our available data on neonatal stroke patients between 2015 and 2020 for clinico-radiological patterns. During this period, 17 neonatal strokes were admitted and the majority were term births with a slight male preponderance. Seizures and encephalopathy were the most common presentation. Multiple maternal risk factors such as gestational diabetes, meconium-stained liquor, APLA syndrome, fever, deranged coagulation profile, oligohydramnios, cord prolapse, and non-progressive labor were seen. Cardiac abnormalities were seen in only less than half of these patients with the most common finding being atrial septal defects (ASD). Transcranial ultrasound was performed in eight neonates and the pick-up rate of ultrasound was poor. MR imaging showed large infarcts in 11 patients. The MCA territory was most commonly involved. Interestingly, five neonates had venous thrombosis with three showing it in addition to arterial thrombosis. Associated ictal, as well as Wallerian changes, were noted in 10. Although large territorial infarcts were the most common pattern, non-contrast MR angiography did not show major vessel occlusion in these cases. Outcomes were fairly good and only three patients had a residual motor deficit at 1 year. No recurrence of stroke was seen in any of the neonates.


Subject(s)
Magnetic Resonance Imaging , Stroke , Infant, Newborn , Humans , Male , Child , Tertiary Care Centers , Neuroimaging/methods , Stroke/diagnostic imaging , Magnetic Resonance Spectroscopy , Infarction
7.
Mar Pollut Bull ; 180: 113769, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35609465

ABSTRACT

The rise in the use of single-use plastics and personal protective equipment (PPE) has increased plastic waste in the marine environment. In this study, we surveyed the presence of PPE (face masks and gloves) discharged in 6 beaches along the coast of India. A total of 496 PPE were counted with an average density of 1.08 × 10-3 PPE m-2. The PPE density found was comparable to previous studies. Face masks were the most recorded type of PPE (98.39%), with gloves accounting for only 1.61% of the total. However, a significant reduction in the appearance of PPE was recorded on all six beaches, likely due to the increase in vaccination rates. The most contaminated places were the beaches with recreational activities + fishing. It has been noticed that the lack of awareness of environmental pollution and the negligence of the population and the mismanagement of municipal waste are the main causes of beach pollution by PPE. This study confirms the potential threat of PPE to terrestrial and aquatic organisms of multiple taxa in India, but further studies are needed to quantify the impact of this type of waste on marine animals.


Subject(s)
COVID-19 , Personal Protective Equipment , COVID-19/prevention & control , Environmental Pollution , Humans , Pandemics , Plastics
8.
J Exp Med ; 219(3)2022 03 07.
Article in English | MEDLINE | ID: mdl-35226042

ABSTRACT

Delivery of biotherapeutics across the blood-brain barrier (BBB) is a challenge. Many approaches fuse biotherapeutics to platforms that bind the transferrin receptor (TfR), a brain endothelial cell target, to facilitate receptor-mediated transcytosis across the BBB. Here, we characterized the pharmacological behavior of two distinct TfR-targeted platforms fused to iduronate 2-sulfatase (IDS), a lysosomal enzyme deficient in mucopolysaccharidosis type II (MPS II), and compared the relative brain exposures and functional activities of both approaches in mouse models. IDS fused to a moderate-affinity, monovalent TfR-binding enzyme transport vehicle (ETV:IDS) resulted in widespread brain exposure, internalization by parenchymal cells, and significant substrate reduction in the CNS of an MPS II mouse model. In contrast, IDS fused to a standard high-affinity bivalent antibody (IgG:IDS) resulted in lower brain uptake, limited biodistribution beyond brain endothelial cells, and reduced brain substrate reduction. These results highlight important features likely to impact the clinical development of TfR-targeting platforms in MPS II and potentially other CNS diseases.


Subject(s)
Iduronate Sulfatase , Mucopolysaccharidosis II , Receptors, Transferrin , Recombinant Fusion Proteins , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Iduronate Sulfatase/metabolism , Iduronate Sulfatase/pharmacology , Lysosomes/metabolism , Mice , Mucopolysaccharidosis II/metabolism , Receptors, Transferrin/metabolism , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/pharmacology , Tissue Distribution
9.
Cell ; 184(18): 4651-4668.e25, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34450028

ABSTRACT

GRN mutations cause frontotemporal dementia (GRN-FTD) due to deficiency in progranulin (PGRN), a lysosomal and secreted protein with unclear function. Here, we found that Grn-/- mice exhibit a global deficiency in bis(monoacylglycero)phosphate (BMP), an endolysosomal phospholipid we identified as a pH-dependent PGRN interactor as well as a redox-sensitive enhancer of lysosomal proteolysis and lipolysis. Grn-/- brains also showed an age-dependent, secondary storage of glucocerebrosidase substrate glucosylsphingosine. We investigated a protein replacement strategy by engineering protein transport vehicle (PTV):PGRN-a recombinant protein linking PGRN to a modified Fc domain that binds human transferrin receptor for enhanced CNS biodistribution. PTV:PGRN rescued various Grn-/- phenotypes in primary murine macrophages and human iPSC-derived microglia, including oxidative stress, lysosomal dysfunction, and endomembrane damage. Peripherally delivered PTV:PGRN corrected levels of BMP, glucosylsphingosine, and disease pathology in Grn-/- CNS, including microgliosis, lipofuscinosis, and neuronal damage. PTV:PGRN thus represents a potential biotherapeutic for GRN-FTD.


Subject(s)
Biological Products/therapeutic use , Brain/metabolism , Lysosomal Storage Diseases/therapy , Progranulins/therapeutic use , Animals , Bone Morphogenetic Proteins/metabolism , Endosomes/metabolism , Female , Frontotemporal Dementia/blood , Frontotemporal Dementia/cerebrospinal fluid , Gliosis/complications , Gliosis/pathology , Humans , Induced Pluripotent Stem Cells/metabolism , Inflammation/pathology , Lipid Metabolism , Lipofuscin/metabolism , Lysosomes/metabolism , Macrophages/metabolism , Male , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Nerve Degeneration/pathology , Phenotype , Progranulins/deficiency , Progranulins/metabolism , Receptors, Immunologic/metabolism , Receptors, Transferrin/metabolism , Tissue Distribution
10.
Pol J Radiol ; 86: e208-e216, 2021.
Article in English | MEDLINE | ID: mdl-34093917

ABSTRACT

PURPOSE: The aim of our study was to compare single-energy (SECT) and dual-energy (DECT) abdominal computed tomography (CT) examinations in matched patient cohorts regarding the differences in effective radiation dose (ERD) and image quality performed in a third-generation dual-source computed tomography (DSCT) scanner. MATERIAL AND METHODS: Our study included 100 patients, who were divided randomly into 2 groups. The patients included in Group A were scanned by SECT, and Group B members were scanned by DECT. Volume CT dose index (CTDIvol), dose length product (DLP), and ERD for venous phase acquisition were recorded in each patient and were normalised for 40 cm. Analyses were performed by using statistical software (SPSS version 20.0 for windows), and Bonferroni correction for multiple comparisons was applied for p-values and confidence intervals. RESULTS: Average ERD based on DLP values normalised for 40 cm acquisition were obtained for both Group A and Group B. The mean ERD for Group A was 11.89 mSv, and for group B it was 6.87 mSv. There was a significant difference in these values between Group A and Group B as shown by a p-value of < 0.001. On subjective and objective analysis, there was no statistically significant difference in image quality between the 2 groups. CONCLUSIONS: The protocols in third-generation DSCT using dual-energy mode resulted in significant reductions in the effective radiation dose (by approximately 58%) compared to SECT in routine abdominal examination in matched cohorts. Therefore, the quantitative imaging potential of DECT can be utilised in needed patients with decreased radiation dose in third-generation DSCT.

11.
Int J Mol Sci ; 21(15)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751752

ABSTRACT

We recently developed a blood-brain barrier (BBB)-penetrating enzyme transport vehicle (ETV) fused to the lysosomal enzyme iduronate 2-sulfatase (ETV:IDS) and demonstrated its ability to reduce glycosaminoglycan (GAG) accumulation in the brains of a mouse model of mucopolysaccharidosis (MPS) II. To accurately quantify GAGs, we developed a plate-based high-throughput enzymatic digestion assay coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to simultaneously measure heparan sulfate and dermatan sulfate derived disaccharides in tissue, cerebrospinal fluid (CSF) and individual cell populations isolated from mouse brain. The method offers ultra-high sensitivity enabling quantitation of specific GAG species in as low as 100,000 isolated neurons and a low volume of CSF. With an LOD at 3 ng/mL and LLOQs at 5-10 ng/mL, this method is at least five times more sensitive than previously reported approaches. Our analysis demonstrated that the accumulation of CSF and brain GAGs are in good correlation, supporting the potential use of CSF GAGs as a surrogate biomarker for brain GAGs. The bioanalytical method was qualified through the generation of standard curves in matrix for preclinical studies of CSF, demonstrating the feasibility of this assay for evaluating therapeutic effects of ETV:IDS in future studies and applications in a wide variety of MPS disorders.


Subject(s)
Biomarkers/metabolism , Glycosaminoglycans/isolation & purification , Iduronate Sulfatase/genetics , Mucopolysaccharidosis II/diagnosis , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Brain/metabolism , Brain/pathology , Chromatography, Liquid , Dermatan Sulfate/pharmacology , Disaccharides/chemistry , Disease Models, Animal , Glycosaminoglycans/genetics , Glycosaminoglycans/metabolism , Heparitin Sulfate/pharmacology , Humans , Iduronate Sulfatase/metabolism , Mice , Mucopolysaccharidosis II/genetics , Mucopolysaccharidosis II/pathology , Tandem Mass Spectrometry
12.
Sci Transl Med ; 12(545)2020 05 27.
Article in English | MEDLINE | ID: mdl-32461331

ABSTRACT

Most lysosomal storage diseases (LSDs) involve progressive central nervous system (CNS) impairment, resulting from deficiency of a lysosomal enzyme. Treatment of neuronopathic LSDs remains a considerable challenge, as approved intravenously administered enzyme therapies are ineffective in modifying CNS disease because they do not effectively cross the blood-brain barrier (BBB). We describe a therapeutic platform for increasing the brain exposure of enzyme replacement therapies. The enzyme transport vehicle (ETV) is a lysosomal enzyme fused to an Fc domain that has been engineered to bind to the transferrin receptor, which facilitates receptor-mediated transcytosis across the BBB. We demonstrate that ETV fusions containing iduronate 2-sulfatase (ETV:IDS), the lysosomal enzyme deficient in mucopolysaccharidosis type II, exhibited high intrinsic activity and degraded accumulated substrates in both IDS-deficient cell and in vivo models. ETV substantially improved brain delivery of IDS in a preclinical model of disease, enabling enhanced cellular distribution to neurons, astrocytes, and microglia throughout the brain. Improved brain exposure for ETV:IDS translated to a reduction in accumulated substrates in these CNS cell types and peripheral tissues and resulted in a complete correction of downstream disease-relevant pathologies in the brain, including secondary accumulation of lysosomal lipids, perturbed gene expression, neuroinflammation, and neuroaxonal damage. These data highlight the therapeutic potential of the ETV platform for LSDs and provide preclinical proof of concept for TV-enabled therapeutics to treat CNS diseases more broadly.


Subject(s)
Blood-Brain Barrier , Iduronate Sulfatase , Animals , Brain , Disease Models, Animal , Enzyme Replacement Therapy , Lysosomes , Mice
13.
ACS Chem Biol ; 12(9): 2427-2435, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28800217

ABSTRACT

The voltage-gated sodium channel NaV1.7 is a genetically validated pain target under investigation for the development of analgesics. A therapeutic with a less frequent dosing regimen would be of value for treating chronic pain; however functional NaV1.7 targeting antibodies are not known. In this report, we describe NaV1.7 inhibitory peptide-antibody conjugates as an alternate construct for potential prolonged channel blockade through chemical derivatization of engineered antibodies. We previously identified NaV1.7 inhibitory peptide GpTx-1 from tarantula venom and optimized its potency and selectivity. Tethering GpTx-1 peptides to antibodies bifunctionally couples FcRn-based antibody recycling attributes to the NaV1.7 targeting function of the peptide warhead. Herein, we conjugated a GpTx-1 peptide to specific engineered cysteines in a carrier anti-2,4-dinitrophenol monoclonal antibody using polyethylene glycol linkers. The reactivity of 13 potential cysteine conjugation sites in the antibody scaffold was tuned using a model alkylating agent. Subsequent reactions with the peptide identified cysteine locations with the highest conversion to desired conjugates, which blocked NaV1.7 currents in whole cell electrophysiology. Variations in attachment site, linker, and peptide loading established design parameters for potency optimization. Antibody conjugation led to in vivo half-life extension by 130-fold relative to a nonconjugated GpTx-1 peptide and differential biodistribution to nerve fibers in wild-type but not NaV1.7 knockout mice. This study describes the optimization and application of antibody derivatization technology to functionally inhibit NaV1.7 in engineered and neuronal cells.


Subject(s)
Immunoconjugates/pharmacology , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Peptides/pharmacology , Voltage-Gated Sodium Channel Blockers/pharmacology , Animals , HEK293 Cells , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacokinetics , Male , Mice , Models, Molecular , Peptides/chemistry , Peptides/pharmacokinetics , Tissue Distribution , Voltage-Gated Sodium Channel Blockers/chemistry , Voltage-Gated Sodium Channel Blockers/pharmacokinetics
14.
MAbs ; 9(5): 812-819, 2017 07.
Article in English | MEDLINE | ID: mdl-28506197

ABSTRACT

Flexible and protease resistant (G4S)n linkers are used extensively in protein engineering to connect various protein domains. Recently, several groups have observed xylose-based O-glycosylation at linker Ser residues that yield unwanted heterogeneity and may affect product quality. Because of this, an engineering effort was implemented to explore different linker sequence constructs. Here, we demonstrate the presence of an unexpected hydroxylation of a prolyl residue in the linker, made possible through the use of high-resolution mass spectrometry (HR-MS) and MSn. The discovery started with the detection of a poorly resolved ∼+17 Da mass addition at the reduced protein chain level of an Fc-fusion construct by liquid chromatography-MS. Upon further investigation at the peptide level using HR-MS, the mass increase was determined to be +15.99 Da and was localized to the linker peptide SLSLSPGGGGGPAR [210-223]. This peptide corresponds to the C-terminus of Fc [210-216], the G4P linker [217-221], and first 2 amino acids of a growth factor [222-223]. The linker peptide was first subjected to MS2 with collision-induced dissociation (CID) activation. The fragmentation profile localized the modification to the GGGPA [218-222] portion of the peptide. Accurate mass measurement indicated that the modification is an addition of an oxygen and cannot be CH4, thus eliminating several possibilities such as Pro→Leu. However, other possibilities cannot be ruled out. Higher-energy collision-induced dissociation (HCD)-MS2 and MS3 using CID/CID were both unable to differentiate between Ala222→ Ser222 or Pro221→ Hyp221. Finally, MS3 using high-resolution CID/HCD confirmed the mass increase to be a Pro221→Hyp221 post-translational modification.


Subject(s)
Hydroxyproline/analysis , Immunoglobulin Fc Fragments/analysis , Mass Spectrometry/methods , Peptides/analysis , Protein Processing, Post-Translational , Recombinant Fusion Proteins/analysis , Animals , Humans
15.
J Biol Chem ; 292(5): 1865-1875, 2017 02 03.
Article in English | MEDLINE | ID: mdl-27994062

ABSTRACT

IgG isotypes can differentially bind to Fcγ receptors and complement, making the selection of which isotype to pursue for development of a particular therapeutic antibody important in determining the safety and efficacy of the drug. IgG2 and IgG4 isotypes have significantly lower binding affinity to Fcγ receptors. Recent evidence suggests that the IgG2 isotype is not completely devoid of effector function, whereas the IgG4 isotype can undergo in vivo Fab arm exchange leading to bispecific antibody and off-target effects. Here an attempt was made to engineer an IgG1-based scaffold lacking effector function but with stability equivalent to that of the parent IgG1. Care was taken to ensure that both stability and lack of effector function was achieved with a minimum number of mutations. Among the Asn297 mutants that result in lack of glycosylation and thus loss of effector function, we demonstrate that the N297G variant has better stability and developability compared with the N297Q or N297A variants. To further improve the stability of N297G, we introduced a novel engineered disulfide bond at a solvent inaccessible location in the CH2 domain. The resulting scaffold has stability greater than or equivalent to that of the parental IgG1 scaffold. Extensive biophysical analyses and pharmacokinetic (PK) studies in mouse, rat, and monkey further confirmed the developability of this unique scaffold, and suggest that it could be used for all Fc containing therapeutics (e.g. antibodies, bispecific antibodies, and Fc fusions) requiring lack of effector function or elimination of binding to Fcγ receptors.


Subject(s)
Amino Acid Substitution , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fc Fragments/genetics , Immunoglobulin G/genetics , Mutation, Missense , Animals , Humans , Macaca fascicularis , Mice , Rats
16.
J Biol Chem ; 292(5): 1876-1883, 2017 02 03.
Article in English | MEDLINE | ID: mdl-27994063

ABSTRACT

The stable effector functionLess (SEFL) antibody was designed as an IgG1 antibody with a constant region that lacks the ability to interact with Fcγ receptors. The engineering and stability and pharmacokinetic assessments of the SEFL scaffold is described in the accompanying article (Jacobsen, F. W., Stevenson, R., Li, C., Salimi-Moosavi, H., Liu, L., Wen, J., Luo, Q., Daris, K., Buck, L., Miller, S., Ho, S-Y., Wang, W., Chen, Q., Walker, K., Wypych, J., Narhi, L., and Gunasekaran, K. (2017) J. Biol. Chem 292). The biological properties of these SEFL antibodies were assessed in a variety of human and cynomolgus monkey in vitro assays. Binding of parent molecules and their SEFL variants to human and cynomolgus monkey FcγRs were evaluated using flow cytometry-based binding assays. The SEFL variants tested showed decreased binding affinity to human and cynomolgus FcγRs compared with the wild-type IgG1 antibody. In addition, SEFL variants demonstrated no antibody-dependent cell-mediated cytotoxicity in vitro against Daudi cells with cynomolgus monkey peripheral blood mononuclear cells, and had minimal complement-dependent cytotoxicity activity similar to that of the negative control IgG2 in a CD20+ human Raji lymphoma cell line. SEFL mutations eliminated off-target antibody-dependent monocyte phagocytosis of cynomolgus monkey platelets, and cynomolgus platelet activation in vitro These experiments demonstrate that the SEFL modifications successfully eliminated Fc-associated effector binding and functions.


Subject(s)
Antibodies, Monoclonal , Blood Platelets/immunology , Immunoglobulin G , Monocytes/immunology , Phagocytosis/drug effects , Platelet Activation/drug effects , Receptors, IgG , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Cell Line, Tumor , Humans , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Immunoglobulin G/pharmacology , Macaca fascicularis , Mice , Phagocytosis/immunology , Platelet Activation/immunology , Receptors, IgG/genetics , Receptors, IgG/immunology
17.
Nat Commun ; 7: 11505, 2016 05 27.
Article in English | MEDLINE | ID: mdl-27230681

ABSTRACT

Inhibition of the Wnt antagonist sclerostin increases bone mass in patients with osteoporosis and in preclinical animal models. Here we show increased levels of the Wnt antagonist Dickkopf-1 (DKK-1) in animals treated with sclerostin antibody, suggesting a negative feedback mechanism that limits Wnt-driven bone formation. To test our hypothesis that co-inhibition of both factors further increases bone mass, we engineer a first-in-class bispecific antibody with single residue pair mutations in the Fab region to promote efficient and stable cognate light-heavy chain pairing. We demonstrate that dual inhibition of sclerostin and DKK-1 leads to synergistic bone formation in rodents and non-human primates. Furthermore, by targeting distinct facets of fracture healing, the bispecific antibody shows superior bone repair activity compared with monotherapies. This work supports the potential of this agent both for treatment and prevention of fractures and offers a promising therapeutic approach to reduce the burden of low bone mass disorders.


Subject(s)
Antibodies, Bispecific/administration & dosage , Fractures, Bone/drug therapy , Fractures, Bone/physiopathology , Glycoproteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Adaptor Proteins, Signal Transducing , Animals , Bone Density , Disease Models, Animal , Female , Fractures, Bone/genetics , Fractures, Bone/metabolism , Glycoproteins/genetics , Humans , Intercellular Signaling Peptides and Proteins/genetics , Macaca fascicularis , Male , Mice , Mice, Knockout , Osteogenesis/drug effects , Rats , Rats, Sprague-Dawley , Wnt Signaling Pathway/drug effects , Wound Healing/drug effects
18.
Immunol Rev ; 270(1): 51-64, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26864104

ABSTRACT

Since the late 1990s, the use of transgenic animal platforms has transformed the discovery of fully human therapeutic monoclonal antibodies. The first approved therapy derived from a transgenic platform--the epidermal growth factor receptor antagonist panitumumab to treat advanced colorectal cancer--was developed using XenoMouse(®) technology. Since its approval in 2006, the science of discovering and developing therapeutic monoclonal antibodies derived from the XenoMouse(®) platform has advanced considerably. The emerging array of antibody therapeutics developed using transgenic technologies is expected to include antibodies and antibody fragments with novel mechanisms of action and extreme potencies. In addition to these impressive functional properties, these antibodies will be designed to have superior biophysical properties that enable highly efficient large-scale manufacturing methods. Achieving these new heights in antibody drug discovery will ultimately bring better medicines to patients. Here, we review best practices for the discovery and bio-optimization of monoclonal antibodies that fit functional design goals and meet high manufacturing standards.


Subject(s)
Antibodies, Monoclonal, Humanized/biosynthesis , Antibodies, Monoclonal, Humanized/therapeutic use , Biotechnology , Drug Discovery , Mice, Transgenic , Animals , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/genetics , Antibody Formation , Genetic Engineering , Humans , Hybridomas/immunology , Hybridomas/metabolism , Immunoglobulin Isotypes/biosynthesis , Immunoglobulin Isotypes/chemistry , Immunoglobulin Isotypes/genetics , Mice
19.
BJR Case Rep ; 2(4): 20150507, 2016.
Article in English | MEDLINE | ID: mdl-30460031

ABSTRACT

Pancreatic lipomas are rare. We present a case of incidentally discovered pancreatic lipoma in a 45-year-old female suffering from metastatic ovarian carcinoma who was referred to radiology for follow-up imaging. Fat-containing tumours originating from the pancreas are very rare. Most lipomasshow characteristic features on imaging that allow their differentiation. In most cases, accurate diagnosis is attained without any histopathological confirmation. We present the imaging features of pancreatic lipoma on ultrasound, CT scan and MRI, the differential diagnosis and a brief review of the literature.

20.
J Biol Chem ; 290(12): 7535-62, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25583986

ABSTRACT

Producing pure and well behaved bispecific antibodies (bsAbs) on a large scale for preclinical and clinical testing is a challenging task. Here, we describe a new strategy for making monovalent bispecific heterodimeric IgG antibodies in mammalian cells. We applied an electrostatic steering mechanism to engineer antibody light chain-heavy chain (LC-HC) interface residues in such a way that each LC strongly favors its cognate HC when two different HCs and two different LCs are co-expressed in the same cell to assemble a functional bispecific antibody. We produced heterodimeric IgGs from transiently and stably transfected mammalian cells. The engineered heterodimeric IgG molecules maintain the overall IgG structure with correct LC-HC pairings, bind to two different antigens with comparable affinity when compared with their parental antibodies, and retain the functionality of parental antibodies in biological assays. In addition, the bispecific heterodimeric IgG derived from anti-HER2 and anti-EGF receptor (EGFR) antibody was shown to induce a higher level of receptor internalization than the combination of two parental antibodies. Mouse xenograft BxPC-3, Panc-1, and Calu-3 human tumor models showed that the heterodimeric IgGs strongly inhibited tumor growth. The described approach can be used to generate tools from two pre-existent antibodies and explore the potential of bispecific antibodies. The asymmetrically engineered Fc variants for antibody-dependent cellular cytotoxicity enhancement could be embedded in monovalent bispecific heterodimeric IgG to make best-in-class therapeutic antibodies.


Subject(s)
Immunoglobulin G/chemistry , Static Electricity , Amino Acids/chemistry , Animals , Antibody-Dependent Cell Cytotoxicity , CHO Cells , Cell Line , Cricetulus , Dimerization , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G/immunology , Mice , Protein Engineering , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL