Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1267654, 2023.
Article in English | MEDLINE | ID: mdl-37809103

ABSTRACT

To mount an effective anti-tumor immune response capable of controlling or eliminating disease, sufficient numbers of lymphocytes must be recruited to malignant tissue and allowed to sustain their effector functions. Indeed, higher infiltration of T and B cells in tumor tissue, often referred to as "hot tumors", is prognostic for patient survival and predictive of response to immunotherapy in almost all cancer types. The organization of tertiary lymphoid structures (TLS) in solid tumors is a unique example of a hot tumor whereby T and B lymphocytes aggregate with antigen presenting cells and high endothelial venules reflecting the cellular organization observed in lymphoid tissue. Many groups have reported that the presence of preexisting TLS in tumors is associated with a superior adaptive immune response, response to immunotherapy, and improved survivorship over those without TLS. Accordingly, there is significant interest into understanding the mechanisms of how and why TLS organize so that they can be elicited therapeutically in patients with few or no TLS. Unfortunately, the most commonly used mouse models of cancer do not spontaneously form TLS, thus significantly restricting our understanding of TLS biology. This brief review will summarize our current state of knowledge of TLS neogenesis and address the current gaps in the field.


Subject(s)
Neoplasms , Tertiary Lymphoid Structures , Mice , Animals , Humans , Lymphoid Tissue , Prognosis , Inflammation
2.
Cancers (Basel) ; 15(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37568782

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease due to its late presentation and tendency to recur early even after optimal surgical resection. Currently, there are limited options for effective systemic therapy. In addition, PDAC typically generates an immune-suppressive tumor microenvironment; trials of immunotherapy in metastatic PDAC have yielded disappointing results. There is considerable interest in using immunotherapy approaches in the neoadjuvant setting in order to prime the immune system to detect and prevent micrometastatic disease and recurrence. A scoping review was conducted to identify published and ongoing trials utilizing preoperative immunotherapy. In total, 9 published trials and 27 ongoing trials were identified. The published trials included neoadjuvant immune checkpoint inhibitors, cancer vaccines, and other immune-modulating agents that target mechanisms distinct from that of immune checkpoint inhibition. Most of these are early phase trials which suggest improvements in disease-free and overall survival when combined with standard neoadjuvant therapy. Ongoing trials are exploring various combinations of these agents with each other and with chemotherapy and/or radiation. Rational combination immunotherapy in addition to standard neoadjuvant therapy has the potential to improve outcomes in PDAC, but further clinical trials are needed, particularly those which utilize an adaptive trial design.

3.
Sci Rep ; 13(1): 6277, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37072485

ABSTRACT

Tissue resident memory (Trm) CD8 T cells infiltrating tumors represent an enriched population of tumor antigen-specific T cells, and their presence is associated with improved outcomes in patients. Using genetically engineered mouse pancreatic tumor models we demonstrate that tumor implantation generates a Trm niche that is dependent on direct antigen presentation by cancer cells. However, we observe that initial CCR7-mediated localization of CD8 T cells to tumor draining lymph nodes is required to subsequently generate CD103+ CD8 T cells in tumors. We observe that the formation of CD103+ CD8 T cells in tumors is dependent on CD40L but independent of CD4 T cells, and using mixed chimeras we show that CD8 T cells can provide their own CD40L to permit CD103+ CD8 T cell differentiation. Finally, we show that CD40L is required to provide systemic protection against secondary tumors. These data suggest that CD103+ CD8 T cell formation in tumors can occur independent of the two-factor authentication provided by CD4 T cells and highlight CD103+ CD8 T cells as a distinct differentiation decision from CD4-dependent central memory.


Subject(s)
Immunologic Memory , Neoplasms , Animals , Mice , CD40 Ligand , Neoplasms/pathology , CD8-Positive T-Lymphocytes , Lymphocyte Activation
4.
Lancet Oncol ; 23(9): 1189-1200, 2022 09.
Article in English | MEDLINE | ID: mdl-35952709

ABSTRACT

BACKGROUND: TGF-ß is an immunosuppressive cytokine that is upregulated in colorectal cancer. TGF-ß blockade improved response to chemoradiotherapy in preclinical models of colorectal adenocarcinoma. We aimed to test the hypothesis that adding the TGF-ß type I receptor kinase inhibitor galunisertib to neoadjuvant chemoradiotherapy would improve pathological complete response rates in patients with locally advanced rectal cancer. METHODS: This was an investigator-initiated, single-arm, phase 2 study done in two medical centres in Portland (OR, USA). Eligible patients had previously untreated, locally advanced, rectal adenocarcinoma, stage IIA-IIIC or IV as per the American Joint Committee on Cancer; Eastern Cooperative Oncology Group status 0-2; and were aged 18 years or older. Participants completed two 14-day courses of oral galunisertib 150 mg twice daily, before and during fluorouracil-based chemoradiotherapy (intravenous fluorouracil 225 mg/m2 over 24 h daily 7 days per week during radiotherapy or oral capecitabine 825 mg/m2 twice per day 5 days per week during radiotherapy; radiotherapy consisted of 50·4-54·0 Gy in 28-30 fractions). 5-9 weeks later, patients underwent response assessment. Patients with a complete response could opt for non-operative management and proceed to modified FOLFOX6 (intravenous leucovorin 400 mg/m2 on day 1, intravenous fluorouracil 400 mg/m2 on day 1 then 2400 mg/m2 over 46 h, and intravenous oxaliplatin 85 mg/m2 on day 1 delivered every 2 weeks for eight cycles) or CAPEOX (intravenous oxaliplatin 130 mg/m2 on day 1 and oral capecitabine 1000 mg/m2 twice daily for 14 days every 3 weeks for four cycles). Patients with less than complete response underwent surgical resection. The primary endpoint was complete response rate, which was a composite of pathological complete response in patients who proceeded to surgery, or clinical complete response maintained at 1 year after last therapy in patients with non-operative management. Safety was a coprimary endpoint. Both endpoints were assessed in the intention-to-treat population. This study is registered with ClinicalTrials.gov, NCT02688712, and is active but not recruiting. FINDINGS: Between Oct 19, 2016, and Aug 31, 2020, 38 participants were enrolled. 25 (71%) of the 35 patients who completed chemoradiotherapy proceeded to total mesorectal excision surgery, five (20%) of whom had pathological complete responses. Ten (29%) patients had non-operative management, three (30%) of whom ultimately chose to have total mesorectal excision. Two (67%) of those three patients had pathological complete responses. Of the remaining seven patients in the non-operative management group, five (71%) had clinical complete responses at 1 year after their last modified FOLFOX6 infusion. In total, 12 (32% [one-sided 95% CI ≥19%]) of 38 patients had a complete response. Common grade 3 adverse events during treatment included diarrhoea in six (16%) of 38 patients, and haematological toxicity in seven (18%) patients. Two (5%) patients had grade 4 adverse events, one related to chemoradiotherapy-induced diarrhoea and dehydration, and the other an intraoperative ischaemic event. No treatment-related deaths occurred. INTERPRETATION: The addition of galunisertib to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer improved the complete response rate to 32%, was well tolerated, and warrants further assessment in randomised trials. FUNDING: Eli Lilly via ExIST program, The Providence Foundation.


Subject(s)
Adenocarcinoma , Neoplasms, Second Primary , Rectal Neoplasms , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Capecitabine , Chemoradiotherapy/adverse effects , Diarrhea/etiology , Fluorouracil , Humans , Neoadjuvant Therapy/adverse effects , Neoplasm Staging , Neoplasms, Second Primary/pathology , Oxaliplatin , Pyrazoles , Quinolines , Rectal Neoplasms/drug therapy , Rectal Neoplasms/pathology , Transforming Growth Factor beta
5.
Cancer Cell ; 40(4): 410-423.e7, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35413272

ABSTRACT

Tumor-infiltrating neoantigen-reactive T cells can mediate regression of metastatic gastrointestinal cancers yet remain poorly characterized. We performed immunological screening against personalized neoantigens in combination with single-cell RNA sequencing on tumor-infiltrating lymphocytes from bile duct and pancreatic cancer patients to characterize the transcriptomic landscape of neoantigen-reactive T cells. We found that most neoantigen-reactive CD8+ T cells displayed an exhausted state with significant CXCL13 and GZMA co-expression compared with non-neoantigen-reactive bystander cells. Most neoantigen-reactive CD4+ T cells from a patient with bile duct cancer also exhibited an exhausted phenotype but with overexpression of HOPX or ADGRG1 while lacking IL7R expression. Thus, neoantigen-reactive T cells infiltrating gastrointestinal cancers harbor distinct transcriptomic signatures, which may provide new opportunities for harnessing these cells for therapy.


Subject(s)
CD8-Positive T-Lymphocytes , Gastrointestinal Neoplasms , Antigens, Neoplasm , Gastrointestinal Neoplasms/genetics , Humans , Lymphocytes, Tumor-Infiltrating , Transcriptome
6.
Nat Commun ; 11(1): 1749, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32273499

ABSTRACT

Transforming growth factor beta (TGFß) is a multipotent immunosuppressive cytokine. TGFß excludes immune cells from tumors, and TGFß inhibition improves the efficacy of cytotoxic and immune therapies. Using preclinical colorectal cancer models in cell type-conditional TGFß receptor I (ALK5) knockout mice, we interrogate this mechanism. Tumor growth delay and radiation response are unchanged in animals with Treg or macrophage-specific ALK5 deletion. However, CD8αCre-ALK5flox/flox (ALK5ΔCD8) mice reject tumors in high proportions, dependent on CD8+ T cells. ALK5ΔCD8 mice have more tumor-infiltrating effector CD8+ T cells, with more cytotoxic capacity. ALK5-deficient CD8+ T cells exhibit increased CXCR3 expression and enhanced migration towards CXCL10. TGFß reduces CXCR3 expression, and increases binding of Smad2 to the CXCR3 promoter. In vivo CXCR3 blockade partially abrogates the survival advantage of an ALK5ΔCD8 host. These data demonstrate a mechanism of TGFß immunosuppression through inhibition of CXCR3 in CD8+ T cells, thereby limiting their trafficking into tumors.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , Cell Movement/drug effects , Gene Expression Regulation/drug effects , Neoplasms/genetics , Receptors, CXCR3/genetics , Transforming Growth Factor beta/pharmacology , Animals , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Survival/drug effects , Cell Survival/genetics , Chemokine CXCL10/genetics , Chemokine CXCL10/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Neoplasms/metabolism , Neoplasms/pathology , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Receptors, CXCR3/metabolism , Smad2 Protein/metabolism
7.
PLoS One ; 14(2): e0211117, 2019.
Article in English | MEDLINE | ID: mdl-30726287

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a fibrotic stroma with a poor lymphocyte infiltrate, in part driven by cancer-associated fibroblasts (CAFs). CAFs, which express fibroblast activation protein (FAP), contribute to immune escape via exclusion of anti-tumor CD8+ T cells from cancer cells, upregulation of immune checkpoint ligand expression, immunosuppressive cytokine production, and polarization of tumor infiltrating inflammatory cells. FAP is a post-proline peptidase selectively expressed during tissue remodeling and repair, such as with wound healing, and in the tumor microenvironment by cancer-associated fibroblasts. We targeted FAP function using a novel small molecule inhibitor, UAMC-1110, and mice with germline knockout of FAP and concomitant knock-in of E. coli beta-galactosidase. We depleted CAFs by adoptive transfer of anti-ßgal T cells into the FAP knockout animals. Established syngeneic pancreatic tumors in immune competent mice were targeted with these 3 strategies, followed by focal radiotherapy to the tumor. FAP loss was associated with improved antigen-specific tumor T cell infiltrate and enhanced collagen deposition. However, FAP targeting alone or with tumor-directed radiation did not improve survival even when combined with anti-PD1 therapy. Targeting of CAFs alone or in combination with radiation did not improve survival. We conclude that targeting FAP and CAFs in combination with radiation is capable of enhancing anti-tumor T cell infiltrate and function, but does not result in sufficient tumor clearance to extend survival.


Subject(s)
Antibodies/metabolism , Carcinoma, Pancreatic Ductal/therapy , Gelatinases/antagonists & inhibitors , Membrane Proteins/antagonists & inhibitors , Pancreatic Neoplasms/therapy , Small Molecule Libraries/administration & dosage , T-Lymphocytes/transplantation , Adoptive Transfer , Animals , Cancer-Associated Fibroblasts/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Chemoradiotherapy , Combined Modality Therapy , Endopeptidases , Gelatinases/genetics , Gene Knock-In Techniques , Gene Knockout Techniques , Humans , Membrane Proteins/genetics , Mice , Pancreatic Neoplasms/metabolism , Serine Endopeptidases/genetics , Small Molecule Libraries/pharmacology , T-Lymphocytes/immunology , Treatment Outcome , Xenograft Model Antitumor Assays , beta-Galactosidase/immunology
8.
Adv Radiat Oncol ; 3(4): 494-505, 2018.
Article in English | MEDLINE | ID: mdl-30370348

ABSTRACT

PURPOSE: The purpose of this article is to assemble, review, and provide a synopsis of the historical and current literature regarding optimal sequencing of radiation (RT) and immunotherapy combination treatments. MATERIALS AND METHODS: A review of the literature was performed using PubMed with the query "radiation" and "Immunotherapy", "PD1", "PDL1", "CTLA4", "OX40", "checkpoint", "vaccine", "macrophage", "STING", and "TGFbeta". Studies that included sequencing of therapy were evaluated and the studies were included at the authors discretion. RESULTS: A paucity of primary literature exists examining the best order of radiation and immunotherapy, most of which was performed in the pre-clinical setting. The observations are that optimal sequencing of various radiation plus immune therapy combinations is dependent on the mechanism(s) of activation by the combination treatment. Immunosuppressive molecules tend to be better inhibited prior to RT while engagement of costimulatory genes is better activated concomitantly with RT. CONCLUSIONS: These data should compel more basic research into both the direct investigation of sequencing efficacy and studies on the mechanisms of immune mediated cell death potentiated by radio-therapy.

9.
Cancer Immunol Res ; 5(3): 198-210, 2017 03.
Article in English | MEDLINE | ID: mdl-28137717

ABSTRACT

Heterogeneity in tumor immune responses is a poorly understood yet critical parameter for successful immunotherapy. In two doxycycline-inducible models where oncogenic H-RasG12V is targeted either to the epidermal basal/stem cell layer with a Keratin14-rtTA transgene (K14Ras), or committed progenitor/suprabasal cells with an Involucrin-tTA transgene (InvRas), we observed strikingly distinct tumor immune responses. On threshold doxycycline levels yielding similar Ras expression, tumor latency, and numbers, tumors from K14Ras mice had an immunosuppressed microenvironment, whereas InvRas tumors had a proinflammatory microenvironment. On a Rag1-/- background, InvRas mice developed fewer and smaller tumors that regressed over time, whereas K14Ras mice developed more tumors with shorter latency than Rag1+/+ controls. Adoptive transfer and depletion studies revealed that B-cell and CD4 T-cell cooperation was critical for tumor yield, lymphocyte polarization, and tumor immune phenotype in Rag1+/+ mice of both models. Coculture of tumor-conditioned B cells with CD4 T cells implicated direct contact for Th1 and regulatory T cell (Treg) polarization, and CD40-CD40L for Th1, Th2, and Treg generation, a response not observed from splenic B cells. Anti-CD40L caused regression of InvRas tumors but enhanced growth in K14Ras, whereas a CD40 agonist mAb had opposite effects in each tumor model. These data show that position of tumor-initiating cells within a stratified squamous epithelial tissue provokes distinct B- and CD4 T-cell interactions, which establish unique tumor microenvironments that regulate tumor development and response to immunotherapy. Cancer Immunol Res; 5(3); 198-210. ©2017 AACR.


Subject(s)
Carcinoma, Squamous Cell/etiology , Carcinoma, Squamous Cell/metabolism , Genes, ras , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , Amino Acid Substitution , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biomarkers , CD40 Antigens/metabolism , CD40 Ligand/metabolism , Carcinoma, Squamous Cell/pathology , Cell Communication , Codon , Gene Expression , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Mice, Knockout , Mutation , Neoplasm Grading , Neoplastic Stem Cells/pathology , Phenotype , Protein Binding , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
10.
Cancer Discov ; 6(3): 270-85, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26715645

ABSTRACT

UNLABELLED: Pancreas ductal adenocarcinoma (PDAC) has one of the worst 5-year survival rates of all solid tumors, and thus new treatment strategies are urgently needed. Here, we report that targeting Bruton tyrosine kinase (BTK), a key B-cell and macrophage kinase, restores T cell-dependent antitumor immune responses, thereby inhibiting PDAC growth and improving responsiveness to standard-of-care chemotherapy. We report that PDAC tumor growth depends on cross-talk between B cells and FcRγ(+) tumor-associated macrophages, resulting in T(H)2-type macrophage programming via BTK activation in a PI3Kγ-dependent manner. Treatment of PDAC-bearing mice with the BTK inhibitor PCI32765 (ibrutinib) or by PI3Kγ inhibition reprogrammed macrophages toward a T(H)1 phenotype that fostered CD8(+) T-cell cytotoxicity, and suppressed PDAC growth, indicating that BTK signaling mediates PDAC immunosuppression. These data indicate that pharmacologic inhibition of BTK in PDAC can reactivate adaptive immune responses, presenting a new therapeutic modality for this devastating tumor type. SIGNIFICANCE: We report that BTK regulates B-cell and macrophage-mediated T-cell suppression in pancreas adenocarcinomas. Inhibition of BTK with the FDA-approved inhibitor ibrutinib restores T cell-dependent antitumor immune responses to inhibit PDAC growth and improves responsiveness to chemotherapy, presenting a new therapeutic modality for pancreas cancer.


Subject(s)
Cell Communication/immunology , Immune System/cytology , Immune System/pathology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Protein-Tyrosine Kinases/metabolism , Agammaglobulinaemia Tyrosine Kinase , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biomarkers , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Disease Models, Animal , Disease Progression , Humans , Leukocytes/immunology , Leukocytes/metabolism , Macrophage Activation , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Knockout , Myeloid Cells/immunology , Myeloid Cells/metabolism , Pancreatic Neoplasms/genetics , Receptors, IgG/metabolism , Signal Transduction
11.
Cancer Cell ; 25(6): 809-821, 2014 Jun 16.
Article in English | MEDLINE | ID: mdl-24909985

ABSTRACT

B cells foster squamous cell carcinoma (SCC) development through deposition of immunoglobulin-containing immune complexes in premalignant tissue and Fcγ receptor-dependent activation of myeloid cells. Because human SCCs of the vulva and head and neck exhibited hallmarks of B cell infiltration, we examined B cell-deficient mice and found reduced support for SCC growth. Although ineffective as a single agent, treatment of mice bearing preexisting SCCs with B cell-depleting αCD20 monoclonal antibodies improved response to platinum- and Taxol-based chemotherapy. Improved chemoresponsiveness was dependent on altered chemokine expression by macrophages that promoted tumor infiltration of activated CD8(+) lymphocytes via CCR5-dependent mechanisms. These data reveal that B cells, and the downstream myeloid-based pathways they regulate, represent tractable targets for anticancer therapy in select tumors.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , B-Lymphocytes/immunology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/immunology , Macrophages/immunology , Neoplasms/drug therapy , Neoplasms/immunology , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , CHO Cells , Carcinoma, Squamous Cell/pathology , Cricetulus , Female , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Macrophages/drug effects , Macrophages/pathology , Mice , Mice, Transgenic , Neoplasms/pathology , Organoplatinum Compounds/administration & dosage , Paclitaxel/administration & dosage , Phenotype , Tumor Microenvironment , Xenograft Model Antitumor Assays
12.
Gastroenterology ; 146(7): 1784-94.e6, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24607504

ABSTRACT

BACKGROUND & AIMS: Premalignant lesions and early stage tumors contain immunosuppressive microenvironments that create barriers for cancer vaccines. Kras(G12D/+);Trp53(R172H/+);Pdx-1-Cre (KPC) mice, which express an activated form of Kras in pancreatic tissues, develop pancreatic intraepithelial neoplasms (PanIN) that progress to pancreatic ductal adenocarcinoma (PDA). We used these mice to study immune suppression in PDA. METHODS: We immunized KPC and Kras(G12D/+);Pdx-1-Cre mice with attenuated intracellular Listeria monocytogenes (which induces CD4(+) and CD8(+) T-cell immunity) engineered to express Kras(G12D) (LM-Kras). The vaccine was given alone or in sequence with an anti-CD25 antibody (PC61) and cyclophosphamide to deplete T-regulatory (Treg) cells. Survival times were measured; pancreatic and spleen tissues were collected and analyzed by histologic, flow cytometry, and immunohistochemical analyses. RESULTS: Interferon γ-mediated, CD8(+) T-cell responses were observed in KPC and Kras(G12D/+);Pdx-1-Cre mice given LM-Kras, but not in unvaccinated mice. Administration of LM-Kras to KPC mice 4-6 weeks old (with early stage PanINs), depleted of Treg cells, significantly prolonged survival and reduced PanIN progression (median survival, 265 days), compared with unvaccinated mice (median survival, 150 days; P = .002), mice given only LM-Kras (median survival, 150 days; P = .050), and unvaccinated mice depleted of Treg cells (median survival, 170 days; P = .048). In 8- to 12-week-old mice (with late-stage PanINs), LM-Kras, alone or in combination with Treg cell depletion, did not increase survival time or slow PanIN progression. The combination of LM-Kras and Treg cell depletion reduced numbers of Foxp3(+)CD4(+) T cells in pancreatic lymph nodes, increased numbers of CD4(+) T cells that secrete interleukin 17 and interferon γ, and caused CD11b(+)Gr1(+) cells in the pancreas to acquire an immunostimulatory phenotype. CONCLUSIONS: Immunization of KPC mice with Listeria monocytogenes engineered to express Kras(G12D), along with depletion of Treg cells, reduces progression of early stage, but not late-stage, PanINs. This approach increases infiltration of the lesion with inflammatory cells. It might be possible to design immunotherapies against premalignant pancreatic lesions to slow or prevent progression to PDA.


Subject(s)
Cancer Vaccines/therapeutic use , Carcinoma in Situ/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Listeria monocytogenes/immunology , Pancreatic Neoplasms/drug therapy , T-Lymphocytes, Regulatory/immunology , Animals , Antibodies, Monoclonal/pharmacology , CD11b Antigen/metabolism , Cancer Vaccines/immunology , Carcinoma in Situ/genetics , Carcinoma in Situ/immunology , Carcinoma in Situ/metabolism , Carcinoma in Situ/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cyclophosphamide/pharmacology , Disease Models, Animal , Disease Progression , Forkhead Transcription Factors/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Inflammation Mediators/metabolism , Integrases/genetics , Integrases/metabolism , Interferon-gamma/metabolism , Interleukin-17/metabolism , Listeria monocytogenes/genetics , Listeria monocytogenes/metabolism , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Receptors, Chemokine/metabolism , T-Lymphocytes, Regulatory/metabolism , Time Factors , Trans-Activators/genetics , Trans-Activators/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
13.
Carcinogenesis ; 35(4): 959-66, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24363069

ABSTRACT

Transforming growth factor beta 1 (TGFß1) is a pleiotropic cytokine in the skin that can function both as a tumor promoter and suppressor in chemically induced skin carcinogenesis, but the function in ultraviolet B (UVB) carcinogenesis is not well understood. Treatment of SKH1 hairless mice with the activin-like kinase 5 (ALK5) inhibitor SB431542 to block UVB-induced activation of cutaneous TGFß1 signaling suppressed skin tumor formation but did not alter tumor size or tumor cell proliferation. Tumors that arose in SB-treated mice after 30 weeks had significantly reduced percentage of IFNγ(+) tumor-infiltrating lymphocytes compared with control mice. SB431542 blocked acute and chronic UVB-induced skin inflammation and T-cell activation in the skin-draining lymph node (SDLN) and skin but did not alter UVB-induced epidermal proliferation. We tested the effect of SB431542 on migration of skin dendritic cell (DC) populations because DCs are critical mediators of T-cell activation and cutaneous inflammation. SB431542 blocked (i) UVB-induced Smad2 phosphorylation in dermal DC (dDC) and (ii) SDLN and ear explant migration of CD103(+) CD207(+) and CD207(-) skin DC subsets but did not affect basal or UV-induced migration of Langerhans cells. Mice expressing a dominant-negative TGFß type II receptor in CD11c(+) cells had reduced basal and UVB-induced SDLN migration of CD103(+) CD207(+) and CD207(-) DC subsets and a reduced percentage of CD86(high) dDC following UVB irradiation. Together, these suggest that TGFß1 signaling has a tumor-promoting role in UVB-induced skin carcinogenesis and this is mediated in part through its role in UVB-induced migration of dDC and cutaneous inflammation.


Subject(s)
Dendritic Cells/cytology , Dermatitis/complications , Lymph Nodes/pathology , Neoplasms, Radiation-Induced/etiology , Signal Transduction , Skin Neoplasms/etiology , Transforming Growth Factor beta1/metabolism , Ultraviolet Rays , Animals , Flow Cytometry , Male , Mice , Mice, Hairless , Mice, Transgenic , Neoplasms, Radiation-Induced/metabolism , Neoplasms, Radiation-Induced/pathology , Phosphorylation , Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Smad Proteins/metabolism
14.
Exp Cell Res ; 319(11): 1644-9, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23499742

ABSTRACT

B cells have recently been appreciated as paracrine mediators of solid tumor development. Their ability to influence various hallmarks of cancer development, aside from antigen presentation, can be attributed to the diversity of soluble mediators they express, including cytokines and immunoglobulins, that can act directly and indirectly on the diversity of leukocyte subsets that infiltrate developing tumors, evolving neoplastic cells, as well as select T cell populations in secondary lymphoid organs and within tumor stroma. Herein, we review the literature supporting these interactions and discuss novel approaches to ameliorate protumoral B cell effects for anti-cancer therapy.


Subject(s)
B-Lymphocytes/immunology , Immunotherapy , Neoplasms/immunology , Neoplasms/therapy , Tumor Microenvironment/immunology , Animals , Humans
15.
J Invest Dermatol ; 133(4): 955-63, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23151849

ABSTRACT

The RAS signaling pathway is constitutively activated in psoriatic keratinocytes. We expressed activated H-RAS(V12G) in suprabasal keratinocytes of adult mice and observed rapid development of a psoriasis-like skin phenotype characterized by basal keratinocyte hyperproliferation, acanthosis, hyperkeratosis, intraepidermal neutrophil microabscesses, and increased T helper type 1 (Th1)/Th17 and T cell type 1 (Tc1)/Tc17 skin infiltration. The majority of skin-infiltrating CD8(+) T cells coexpressed IFN-γ and IL-17A. When RAS was expressed on a Rag1-/- background, microabscess formation, inducible nitric oxide synthase expression, and keratinocyte hyperproliferation were suppressed. Depletion of CD8(+), but not CD4(+), T cells reduced cutaneous and systemic inflammation, the RAS-induced increase in cutaneous Th17 and IL-17(+) γδ T cells, and epidermal hyperproliferation to levels similar to a Rag1-/- background. Reconstitution of Rag1-/- inducible RAS mice with purified CD8(+) T cells restored microabscess formation and epidermal hyperproliferation. Neutralization of IFN-γ, but not of IL-17A, in CD8(+) T-cell-reconstituted Rag1-/- mice expressing RAS blocked CD8-mediated skin inflammation, inducible nitric oxide synthase expression, and keratinocyte hyperproliferation. These results show that CD8(+) T cells can orchestrate skin inflammation with psoriasis-like pathology in response to constitutive RAS activation in keratinocytes, and this is primarily mediated through IFN-γ.


Subject(s)
CD8-Positive T-Lymphocytes/pathology , Interferon-gamma/immunology , Proto-Oncogene Proteins p21(ras)/immunology , Psoriasis/immunology , Psoriasis/pathology , Signal Transduction/immunology , Abscess/immunology , Abscess/pathology , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Dermatitis/genetics , Dermatitis/immunology , Dermatitis/pathology , Epidermis/immunology , Epidermis/metabolism , Epidermis/pathology , Female , Interferon-gamma/metabolism , Interleukin-17/genetics , Interleukin-17/immunology , Interleukin-17/metabolism , Keratinocytes/immunology , Keratinocytes/metabolism , Keratinocytes/pathology , Male , Mice , Mice, Transgenic , Neutrophils/immunology , Neutrophils/pathology , Phenotype , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Psoriasis/genetics , Th1 Cells/immunology , Th1 Cells/pathology , Th17 Cells/immunology , Th17 Cells/pathology
16.
J Invest Dermatol ; 133(1): 135-43, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22832490

ABSTRACT

Overexpression of transforming growth factor beta-1 (TGFß1) in mouse epidermis causes cutaneous inflammation and keratinocyte hyperproliferation. Here we examined acute effects of TGFß1 overproduction by keratinocytes on skin dendritic cells (DCs). TGFß1 induction for 2 and 4 days increased the numbers and CD86 expression of B220(+) plasmacytoid DCs (pDCs) and CD207(+)CD103(+), CD207(-)CD103(-)CD11b(+), and CD207(-)CD103(-)CD11b(-) dermal DCs (dDCs) in skin-draining lymph nodes (SDLNs). The dermis of TGFß1-overexpressing mice had significantly more pDCs, CD207(+)CD103(+) dDCs, and CD207(-)CD11b(+) dDCs in the absence of increased dermal proliferation. Application of dye, tetramethyl rhodamine iso-thiocyanate (TRITC), in dibutylpthalate (DBP) solution after TGFß1 induction increased the numbers of TRITC(+)CD207(-) dDCs in SDLNs, and augmented TRITC/DBP-induced Langerhans cell (LC) migration 72 hours post TRITC treatment. Consistent with this, LC migration was increased in vitro by TGFß1 overexpression in skin explants and by exogenous TGFß1 in culture media. Transient TGFß1 induction during DNFB sensitization increased contact hypersensitivity responses by 1.5-fold. Thus, elevated epidermal TGFß1 alone is sufficient to alter homeostasis of multiple cutaneous DC subsets, and enhance DC migration and immune responses to contact sensitizers. These results highlight a role for keratinocyte-derived TGFß1 in DC trafficking and in the initiation of skin inflammation.


Subject(s)
Dermatitis, Contact/metabolism , Keratinocytes/metabolism , Langerhans Cells/metabolism , Transforming Growth Factor beta1/biosynthesis , Animals , Antigens, CD/analysis , Cell Movement/drug effects , Cell Movement/physiology , Cell Proliferation/drug effects , Cells, Cultured , Dermis/drug effects , Dermis/metabolism , Dibutyl Phthalate/administration & dosage , Female , Keratinocytes/drug effects , Langerhans Cells/drug effects , Leukocyte Common Antigens/analysis , Lymph Nodes/drug effects , Lymph Nodes/metabolism , Male , Mice , Rhodamines/administration & dosage , Transforming Growth Factor beta1/pharmacology
17.
J Invest Dermatol ; 130(9): 2295-303, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20410912

ABSTRACT

Overexpression of transforming growth factor-beta1 (TGFbeta1) in the normal epidermis can provoke an inflammatory response, but whether this occurs within a developing tumor is not clear. To test this, we used an inducible transgenic mouse to overexpress TGFbeta1 in premalignant squamous lesions. Within 48 hours of TGFbeta1 induction, there was an increase in IL-17 production by both CD4(+) and gammadelta(+) T cells, together with increased expression of T-helper-17 (Th17)-polarizing cytokines. Induction of TGFbeta1 in premalignant primary keratinocytes elevated the expression of proinflammatory and Th17-polarizing cytokines, and the keratinocyte-conditioned media caused IL-17 production by naive T cells that was dependent on T-cell TGFbeta1 signaling. Microarray analysis showed significant upregulation of proinflammatory genes 2 days after TGFbeta1 induction, and this was followed by increased MPO(+), F4/80(+), and CD8(+) cells in tumors, increased CD8(+) effectors and IFNgamma(+) cells in skin-draining LNs, and tumor regression. In parallel, the percentage of tumor CD11b(+)Ly6G(+) neutrophils was reduced. Neutralization of IL-17 blocked TGFbeta1-induced CD11b(+) Ly6G(-) tumor infiltration but did not alter the reduction of neutrophils or tumor regression. Thus, TGFbeta1 overexpression causes IL-17-dependent and IL-17-independent changes in the premalignant tumor inflammatory microenvironment.


Subject(s)
Carcinoma, Squamous Cell/immunology , Dermatitis/immunology , Interleukin-17 , Precancerous Conditions/immunology , Skin Neoplasms/immunology , Transforming Growth Factor beta1 , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , Carcinoma, Squamous Cell/pathology , Cells, Cultured , Dermatitis/pathology , Disease Progression , Epidermis/immunology , Epidermis/metabolism , Epidermis/pathology , Interleukin-17/genetics , Interleukin-17/immunology , Interleukin-17/metabolism , Keratinocytes/immunology , Keratinocytes/metabolism , Keratinocytes/pathology , Mice , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Papilloma/immunology , Papilloma/pathology , Precancerous Conditions/pathology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Signal Transduction/immunology , Skin Neoplasms/pathology , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/immunology , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...