Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMJ Open ; 14(4): e078911, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38626977

ABSTRACT

INTRODUCTION: Understanding human mobility's role in malaria transmission is critical to successful control and elimination. However, common approaches to measuring mobility are ill-equipped for remote regions such as the Amazon. This study develops a network survey to quantify the effect of community connectivity and mobility on malaria transmission. METHODS: We measure community connectivity across the study area using a respondent driven sampling design among key informants who are at least 18 years of age. 45 initial communities will be selected: 10 in Brazil, 10 in Ecuador and 25 in Peru. Participants will be recruited in each initial node and administered a survey to obtain data on each community's mobility patterns. Survey responses will be ranked and the 2-3 most connected communities will then be selected and surveyed. This process will be repeated for a third round of data collection. Community network matrices will be linked with each country's malaria surveillance system to test the effects of mobility on disease risk. ETHICS AND DISSEMINATION: This study protocol has been approved by the institutional review boards of Duke University (USA), Universidad San Francisco de Quito (Ecuador), Universidad Peruana Cayetano Heredia (Peru) and Universidade Federal Minas Gerais (Brazil). Results will be disseminated in communities by the end of the study.


Subject(s)
Community Networks , Malaria , Humans , Peru/epidemiology , Ecuador/epidemiology , Brazil/epidemiology , Malaria/epidemiology , Malaria/prevention & control
2.
Open Forum Infect Dis ; 11(1): ofae009, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38293246

ABSTRACT

Few studies have described changes in SARS-CoV-2 antibody levels in response to infection and vaccination at frequent intervals and over extended follow-up periods. The purpose of this study was to assess changes in SARS-CoV-2-specific antibody responses among a prospective cohort of health care personnel over 18 months with up to 22 samples per person. Antibody levels and live virus neutralization were measured before and after mRNA-based vaccination with results stratified by (1) SARS-CoV-2 infection status prior to initial vaccination and (2) SARS-CoV-2 infection at any point during follow-up. We found that the antibody response to the first dose was almost 2-fold higher in individuals who were seropositive prior to vaccination, although neutralization titers were more variable. The antibody response induced by vaccination appeared to wane over time but generally persisted for 8 to 9 months, and those who were infected at any point during the study had slightly higher antibody levels over time vs those who remained uninfected. These findings underscore the need to account for SARS-CoV-2 natural infection as a modifier of vaccine responses, and they highlight the importance of frequent testing of longitudinal antibody titers over time. Together, our results provide a clearer understanding of the trajectories of antibody response among vaccinated individuals with and without prior SARS-CoV-2 infection.

4.
medRxiv ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38076857

ABSTRACT

Objectives: Understanding human mobility's role on malaria transmission is critical to successful control and elimination. However, common approaches to measuring mobility are ill-equipped for remote regions such as the Amazon. This study develops a network survey to quantify the effect of community connectivity and mobility on malaria transmission. Design: A community-level network survey. Setting: We collect data on community connectivity along three river systems in the Amazon basin: the Pastaza river corridor spanning the Ecuador-Peru border; and the Amazon and Javari river corridors spanning the Brazil-Peru border. Participants: We interviewed key informants in Brazil, Ecuador, and Peru, including from indigenous communities: Shuar, Achuar, Shiwiar, Kichwa, Ticuna, and Yagua. Key informants are at least 18 years of age and are considered community leaders. Primary outcome: Weekly, community-level malaria incidence during the study period. Methods: We measure community connectivity across the study area using a respondent driven sampling design. Forty-five communities were initially selected: 10 in Brazil, 10 in Ecuador, and 25 in Peru. Participants were recruited in each initial node and administered a survey to obtain data on each community's mobility patterns. Survey responses were ranked and the 2-3 most connected communities were then selected and surveyed. This process was repeated for a third round of data collection. Community network matrices will be linked with eadch country's malaria surveillance system to test the effects of mobility on disease risk. Findings: To date, 586 key informants were surveyed from 126 communities along the Pastaza river corridor. Data collection along the Amazon and Javari river corridors is ongoing. Initial results indicate that network sampling is a superior method to delineate migration flows between communities. Conclusions: Our study provides measures of mobility and connectivity in rural settings where traditional approaches are insufficient, and will allow us to understand mobility's effect on malaria transmission.

5.
Epidemiol Infect ; 151: e202, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38031496

ABSTRACT

Migration is an important risk factor for malaria transmission for malaria transmission, creating networks that connect Plasmodium between communities. This study aims to understand the timing of why people in the Peruvian Amazon migrated and how characteristics of these migrants are associated with malaria risk. A cohort of 2,202 participants was followed for three years (July 2006 - October 2009), with thrice-weekly active surveillance to record infection and recent travel, which included travel destination(s) and duration away. Migration occurred more frequently in the dry season, but the 7-day rolling mean (7DRM) streamflow was positively correlated with migration events (OR 1.25 (95% CI: 1.138, 1.368)). High-frequency and low-frequency migrant populations reported 9.7 (IRR 7.59 (95% CI:.381, 13.160)) and 4.1 (IRR 2.89 (95% CI: 1.636, 5.099)) times more P. vivax cases than those considered non-migrants and 30.7 (IRR 32.42 (95% CI: 7.977, 131.765)) and 7.4 (IRR 7.44 (95% CI: 1.783, 31.066)) times more P. falciparum cases, respectively. High-frequency migrants employed in manual labour within their community were at 2.45 (95% CI: 1.113, 5.416) times higher risk than non-employed low-frequency migrants. This study confirms the importance of migration for malaria risk as well as factors increasing risk among the migratory community, including, sex, occupation, and educational status.


Subject(s)
Malaria, Falciparum , Malaria, Vivax , Malaria , Humans , Malaria, Vivax/epidemiology , Malaria, Falciparum/epidemiology , Plasmodium vivax , Plasmodium falciparum , Peru/epidemiology , Prospective Studies , Malaria/epidemiology
6.
Article in English | MEDLINE | ID: mdl-33066022

ABSTRACT

Border regions have been implicated as important hot spots of malaria transmission, particularly in Latin America, where free movement rights mean that residents can cross borders using just a national ID. Additionally, rural livelihoods largely depend on short-term migrants traveling across borders via the Amazon's river networks to work in extractive industries, such as logging. As a result, there is likely considerable spillover across country borders, particularly along the border between Peru and Ecuador. This border region exhibits a steep gradient of transmission intensity, with Peru having a much higher incidence of malaria than Ecuador. In this paper, we integrate 13 years of weekly malaria surveillance data collected at the district level in Peru and the canton level in Ecuador, and leverage hierarchical Bayesian spatiotemporal regression models to identify the degree to which malaria transmission in Ecuador is influenced by transmission in Peru. We find that increased case incidence in Peruvian districts that border the Ecuadorian Amazon is associated with increased incidence in Ecuador. Our results highlight the importance of coordinated malaria control across borders.


Subject(s)
Malaria/transmission , Bayes Theorem , Ecuador/epidemiology , Humans , Malaria/epidemiology , Peru/epidemiology , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...