Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38604807

ABSTRACT

Concerted efforts have been made in recent years to find solutions to water and wastewater treatment challenges and eliminate the difficulties associated with treatment methods. Various techniques are used to ensure the recycling and reuse of water resources. Owing to their excellent chemical, physical, and biological properties, nanomaterials play an important role when integrated into water/wastewater treatment technologies. Black phosphorus (BP) is a potential nanomaterial candidate for water and wastewater treatment, especially its monolayer 2D derivative called phosphorene. Phosphorene offers relative adjustability in its direct bandgap, high charge carrier mobility, and improved in-plane anisotropy compared to the most extensively studied 2D nanomaterials. In this study, we examined the physical and chemical characteristics and synthetic processes of BP and phosphorene. We provide an overview of the latest advancements in the main applications of BP and phosphorene in water/wastewater treatment, which are categorized as photocatalytic, adsorption, and membrane filtration processes. Additionally, we explore the existing difficulties in the integration of BP and phosphorene into water/wastewater treatment technologies and prospects for future research in this field. In summary, this review highlights the ongoing necessity for significant research efforts on the integration of BP and phosphorene in water and wastewater applications.

2.
Environ Sci Technol ; 55(14): 9434-9443, 2021 07 20.
Article in English | MEDLINE | ID: mdl-33475343

ABSTRACT

As a result of its unique location, Turkey receives air masses from Europe, Russia, Middle East, and Africa, making it an important place in terms of long-range atmospheric transport (LRT) of contaminants. Atmospheric levels of 22 organochlorine pesticides (OCPs), 45 polychlorinated biphenyls (PCBs), and 14 polybrominated diphenyl ethers (PBDEs) were measured in two metropolitan cities, Istanbul and Izmir, on a weekly basis from May 2014 to May 2015. Dichlorodiphenyltrichloroethane (DDT) and its derivatives were dominant OCP species, followed by isomers of hexachlorocyclohexane (HCH) at both sites. The annual mean concentration of ∑DDX (sum of o,p'-DDT, p,p'-DDT, o,p'-DDD, p,p'-DDD, o,p'-DDE, and p,p'-DDE) was 82 pg/m3 for Istanbul and 89 pg/m3 for Izmir, while these levels were about 46 pg/m3 for ∑HCHs (sum of α-, ß-, γ-, and δ-HCH) at both of the sites. At both stations, tri- and tetra-PCBs and tetra- and penta-PBDEs were dominant congeners. The temperature dependence indicates that both LRT and local contaminated areas contribute to the elevated levels. A Lagrangian particle dispersion model (FLEXPART) showed a few potential source regions in northern Africa and Middle East, southern-southwestern and eastern Europe including Russia, as well as from local domestic metropolitan areas.


Subject(s)
Air Pollutants , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Air Pollutants/analysis , Environmental Monitoring , Hydrocarbons, Chlorinated/analysis , Persistent Organic Pollutants , Pesticides/analysis , Polychlorinated Biphenyls/analysis , Turkey
3.
Sci Total Environ ; 633: 30-41, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29573689

ABSTRACT

Cancer has become the primary reason of deaths in Dilovasi probably due to its location with unique topography under the influence of heavy industrialization and traffic. In this study, possible sources and carcinogenic health risks of PAHs and PCBs were investigated in Dilovasi region by Positive Matrix Factorization (PMF) and the USEPA approach, respectively. PAHs and PCBs were measured monthly for a whole year at 23 sampling sites using PUF disk passive samplers. Average ambient air concentrations were found as 285±431ng/m3 and 4152±6072pg/m3, for Σ15PAH and Σ41PCB, respectively. PAH concentrations increased with decreasing temperature especially at urban sites, indicating the impact of residential heating in addition to industrial activities and traffic. On the other hand, PCB concentrations mostly increased with temperature probably due to enhanced volatilization from their sources. Possible sources of PAHs were found as emissions of diesel and gasoline vehicles, biomass and coal combustion, iron and steel industry, and unburned petroleum/petroleum products, whereas iron-steel production, coal and biomass burning, technical PCB mixtures, and industrial emissions were identified for PCBs. The mean carcinogenic risk associated with inhalation exposure to PAHs and PCBs were estimated to be >10-6 and >10-5, respectively, at all sampling points, while the 95th percentile was >10-5 at 15 of 23 and >10-4 at 8 of 23 sampling locations, respectively. Probabilistic assessment showed, especially for PCBs, that a majority of Dilovasi population face significant health risks. The higher risks due to PCBs further indicated that PCBs and possibly other pollutants originating from the same sources such as PBDEs and PCNs may be an important issue for the region.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Carcinogens/analysis , Environmental Monitoring , Inhalation Exposure/statistics & numerical data , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Humans , Industry/statistics & numerical data , Risk Assessment
4.
Sci Total Environ ; 625: 555-565, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29291570

ABSTRACT

Passive air samples were collected at eight sites in Bursa, Turkey during five sampling periods between February-December 2014. Locations encompassed urban, suburban, industrial, rural and background environments. Soil samples (n=8) were collected at each site during February 2014. Six OPEs were detected in samples: tris(2-chloroethyl) phosphate (TCEP), tris(chloropropyl) phosphate (TCPP), triphenyl phosphate (TPHP), tris(2-butoxyethyl) phosphate (TBOEP), tris(2-ethylhexyl) phosphate (TEHP), and tris(2-isopropylphenyl) phosphate (T2iPPP). Frequency of detection in air samples was TCPP and TPHP (100%)>TBOEP (88%)>TCEP (85%)>TEHP (78%)>T2iPPP (20%). Total OPEs in air per site by sampling period (excluding non-detects) ranged from 529 to 19,139pg/m3. In soil, total OPEs ranged from 38 to 468ng/g dw. In air, alkylated OPEs dominated followed by halogenated and aryl OPEs. In air, annual mean concentrations were TBOEP>TCPP>TPHP>T2iPPP>TEHP>TCEP. In soils, alkylated OPEs were dominant at six sites and chlorinated OPEs at two sites. A comparison of OPE profiles between air and soil suggests that soils may be partly a source of OPEs to air. Mean concentrations in air were not directly proportional to temperature, and there were differences between alkylated compared to halogenated and aryl OPEs. In air, total and alkylated OPEs levels were fairly uniform, whereas more variability was found for the halogenated and aryl compounds. The relative contribution to total OPEs decreases for alkylated OPEs and increases for halogenated OPEs in samples going from background to suburban to urban and industrial sites. Levels of individual OPEs were all positively correlated between air and soils. In air, correlations between individual compounds were weak to moderate and were only statistically significant for TBOEP and TPHP. In soils, correlations were generally stronger and statistically significant only for TPHP and T2iPPP.

5.
Sci Total Environ ; 580: 920-935, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27939936

ABSTRACT

Atmospheric and concurrent soil samples were collected during winter and summer of 2014 at 41 sites in Kutahya, Turkey to investigate spatial and seasonal variations, sources, air-soil exchange, and associated carcinogenic risks of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). The highest atmospheric and soil concentrations were observed near power plants and residential areas, and the wintertime concentrations were generally higher than ones measured in summer. Spatial distribution of measured ambient concentrations and results of the factor analysis showed that the major contributing PAH sources in Kutahya region were the coal combustion for power generation and residential heating (48.9%), and diesel and gasoline exhaust emissions (47.3%) while the major PCB sources were the coal (thermal power plants and residential heating) and wood combustion (residential heating) (45.4%), and evaporative emissions from previously used technical PCB mixtures (34.7%). Results of fugacity fraction calculations indicated that the soil and atmosphere were not in equilibrium for most of the PAHs (88.0% in winter, 87.4% in summer) and PCBs (76.8% in winter, 83.8% in summer). For PAHs, deposition to the soil was the dominant mechanism in winter while in summer volatilization was equally important. For PCBs, volatilization dominated in summer while deposition was higher in winter. Cancer risks associated with inhalation and accidental soil ingestion of soil were also estimated. Generally, the estimated carcinogenic risks were below the acceptable risk level of 10-6. The percentage of the population exceeding the acceptable risk level ranged from <1% to 16%, except, 32% of the inhalation risk levels due to PAH exposure in winter at urban/industrial sites were >10-6.


Subject(s)
Air Pollutants/adverse effects , Polychlorinated Biphenyls/adverse effects , Polycyclic Aromatic Hydrocarbons/adverse effects , Power Plants , Seasons , Soil Pollutants/adverse effects , Environmental Monitoring , Humans , Neoplasms/epidemiology , Risk Assessment , Turkey
6.
Chemosphere ; 168: 1345-1355, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27916263

ABSTRACT

Polyurethane foam (PUF) passive samplers were employed to assess air concentrations of polychlorinated biphenyls (PCBs) in background, agricultural, semi-urban, urban and industrial sites in Bursa, Turkey. Samplers were deployed for approximately 2-month periods from February to December 2014 in five sampling campaign. Results showed a clear rural-agricultural-semi-urban-urban-industrial PCBs concentration gradient. Considering all sampling periods, ambient air concentrations of Σ43PCBs ranged from 9.6 to 1240 pg/m3 at all sites with an average of 24.1 ± 8.2, 43.8 ± 24.4, 140 ± 190, 42.8 ± 24.6, 160 ± 280, 84.1 ± 105, 170 ± 150 and 280 ± 540 pg/m3 for Mount Uludag, Uludag University Campus, Camlica, Bursa Technical University Osmangazi Campus, Hamitler, Agakoy, Kestel Organised Industrial District and Demirtas Organised Industrial District sampling sites, respectively. The ambient air PCB concentrations increased along a gradient from background to industrial areas by a factor of 1.7-11.4. 4-Cl PCBs (31.50-81.60%) was the most dominant homologue group at all sampling sites followed by 3-Cl, 7-Cl, 6-Cl and 5-Cl homologue groups. Sampling locations and potential sources grouped in principal component analysis. Results of PCA plots highlighted a large variability of the PCB mixture in air, hence possible related sources, in Bursa area. Calculated inhalation risk levels in this study indicated no serious adverse health effects. This study is one of few efforts to characterize PCB composition in ambient air seasonally and spatially for urban and industrial areas of Turkey by using passive samplers as an alternative sampling method for concurrent monitoring at multiple sites.


Subject(s)
Air Pollutants/analysis , Inhalation Exposure/analysis , Polychlorinated Biphenyls/analysis , Air Pollutants/chemistry , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Humans , Neoplasms , Polychlorinated Biphenyls/chemistry , Polyurethanes/chemistry , Principal Component Analysis , Risk Assessment , Seasons , Turkey
7.
Environ Sci Pollut Res Int ; 23(22): 22500-22512, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27552996

ABSTRACT

Semi-volatile organic compounds were monitored over a whole year, by collection of gas and particle phases every sixth day at a suburban site in Izmir, Turkey. Annual mean concentrations of 32 polychlorinated biphenyls (∑32PCBs) and 14 polycyclic aromatic hydrocarbons (∑14PAHs) were 348 pg/m3 and 36 ng/m3, respectively, while it was 273 pg/m3 for endosulfan, the dominant compound among 23 organochlorine pesticides (OCPs). Monte Carlo simulation was applied to the USEPA exposure-risk models for the estimation of the population exposure and carcinogenic risk probability distributions for heating and non-heating periods. The estimated population risks associated with dermal contact and inhalation routes to ∑32PCBs, ∑14PAHs, and some of the targeted OCPs (α-hexachlorocyclohexane (α-HCH), ß-hexachlorocyclohexane (ß-HCH), heptachlor, heptachlor epoxide, α-chlordane (α-CHL), γ-chlordane (γ-CHL), and p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT)) were in the ranges of 1.86 × 10-16-7.29 × 10-9 and 1.38 × 10-10-4.07 × 10-6, respectively. The inhalation 95th percentile risks for ∑32PCBs, ∑14PAHs, and OCPs were about 6, 3, and 4-7 orders of magnitude higher than those of dermal route, respectively. The 95th percentile inhalation risk for ∑32PCBs and OCPs in the non-heating period were 1.8- and 1.2-4.6 folds higher than in the heating period, respectively. In contrast, the 95th percentile risk levels for ∑14PAHs in the heating period were 4.3 times greater than that of non-heating period for inhalation, respectively. While risk levels associated with exposure to PCBs and OCPs did not exceed the acceptable level of 1 × 10-6, it was exceeded for 47 % of the population associated with inhalation of PAHs with a maximum value of about 4 × 10-6.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Pesticides/analysis , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Seasons , Carcinogens, Environmental/analysis , Chlordan/analysis , DDT/analysis , Endosulfan/analysis , Heptachlor/analysis , Hexachlorocyclohexane/analysis , Humans , Hydrocarbons, Chlorinated/analysis , Turkey
8.
Ecotoxicol Environ Saf ; 108: 106-13, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25046852

ABSTRACT

The aim of this study was to conduct a carcinogenic risk assessment for exposure to polycyclic aromatic hydrocarbons (PAHs) via routes of inhalation and dermal contact. Concentrations of 19 PAH species were determined during a heating period at a site in the city of Balikesir, Turkey. Two questionnaires were administered to a sample of inhabitants to determine time-activity budgets and demographic information. The assessment was conducted for each participant and Balikesir population by deterministic and probabilistic approaches, respectively. Monte Carlo simulation was implemented to determine the population exposure-risk probability distributions. The estimates were based on benzo[a]pyrene equivalent (BaPeq) total PAH concentrations calculated using toxic equivalency factors. The mean and median BaPeq concentrations of gaseous and particulate phases were 3.25 and 1.34, and 38.5 and 34.0ng/m(3), respectively. Carcinogenic risk for inhalation exposure route was estimated by using two different slope factor values (3.9 and 304.5(mg/kg-day)(-1)), recommended by two different organizations, resulting in two (order(s) of magnitude apart) population risk ranges: 1.32×10(-7)-2.23×10(-4), and 1.61×10(-5)-7.95×10(-3), respectively. The population risks associated with dermal exposure were lower compared to those of inhalation, ranging from 6.58×10(-9) to 2.57×10(-6). The proportion of the population with risks higher than the general acceptable level (1.0×10(-6)) was estimated as >99 percent, for inhalation, and as 28 percent for dermal exposure route.


Subject(s)
Air Pollutants/toxicity , Inhalation Exposure/analysis , Neoplasms/chemically induced , Polycyclic Aromatic Hydrocarbons/toxicity , Air Pollutants/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Probability , Risk Assessment , Skin Absorption , Turkey , Vehicle Emissions/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...