Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 356: 120574, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38520862

ABSTRACT

The resource quantity and elemental stoichiometry play pivotal roles in shaping belowground biodiversity. However, a significant knowledge gap remains regarding the influence of different plant communities established through monoculture plantations on soil fungi and bacteria's taxonomic and functional dynamics. This study aimed to elucidate the mechanisms underlying the regulation and adaptation of microbial communities at the taxonomic and functional levels in response to communities formed over 34 years through monoculture plantations of coniferous species (Japanese larch, Armand pine, and Chinese pine), deciduous forest species (Katsura), and natural shrubland species (Asian hazel and Liaotung oak) in the temperate climate. The taxonomic and functional classifications of fungi and bacteria were examined for the mineral topsoil (0-10 cm) using MiSeq-sequencing and annotation tools of microorganisms (FAPROTAX and Funguild). Soil bacterial (6.52 ± 0.15) and fungal (4.46 ± 0.12) OTUs' diversity and richness (5.83*103±100 and 1.12*103±46.4, respectively) were higher in the Katsura plantation compared to Armand pine and Chinese pine. This difference was attributed to low soil DOC/OP (24) and DON/OP (11) ratios in the Katsura, indicating that phosphorus availability increased microbial community diversity. The Chinese pine plantation exhibited low functional diversity (3.34 ± 0.04) and richness (45.2 ± 0.41) in bacterial and fungal communities (diversity 3.16 ± 0.15 and richness 56.8 ± 3.13), which could be attributed to the high C/N ratio (25) of litter. These findings suggested that ecological stoichiometry, such as of enzyme, litter C/N, soil DOC/DOP, and DON/DOP ratios, was a sign of the decoupling of soil microorganisms at the genetic and functional levels to land restoration by plantations. It was found that the stoichiometric ratios of plant biomass served as indicators of microbial functions, whereas the stoichiometric ratios of available nutrients in soil regulated microbial genetic diversity. Therefore, nutrient stoichiometry could serve as a strong predictor of microbial diversity and composition during forest restoration.


Subject(s)
Pinus , Soil Microbiology , Forests , Biodiversity , Soil , Bacteria/genetics , Nutrients
2.
Sci Total Environ ; 924: 171655, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38492605

ABSTRACT

Grassland restoration leads to excessive soils with carbon (C) and nitrogen (N) contents that are inadequate to fulfill the requirements of microorganisms. The differences in the stoichiometric ratios of these elements could limit the activity of microorganisms, which ultimately affects the microbial C, N use efficiencies (CUE, NUE) and the dynamics of soil C and N. The present study was aimed at quantifying the soil microbial nutrient limitation and exploring the mechanisms underlying microbial-induced C and N dynamics in chrono-sequence of restored grasslands. It was revealed that grassland restoration increased microbial C, N content, microbial C, N uptake, and microbial CUE and NUE, while the threshold elemental ratio (the C:N ratio) decreased, which is mainly due to the synergistic effect of the microbial biomass and enzymatic stoichiometry imbalance after grassland restoration. Finally, we present a framework for the nutrient limitation strategies that stoichiometric imbalances constrain microbial-driven C and N dynamics. These results are the direct evidence of causal relations between stoichiometric ratios, microbial responses, and soil C, N cycling.


Subject(s)
Grassland , Soil , Biomass , Soil Microbiology , Nitrogen/analysis , Carbon , Ecosystem , Phosphorus
3.
Sci Total Environ ; 907: 167925, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-37863215

ABSTRACT

Subtropical ecosystems are strongly affected by nitrogen (N) deposition, impacting soil organic matter (SOM) availability and stocks. Here we aimed to reveal the effects of N deposition on i) the structure and functioning of microbial communities and ii) the temperature sensitivity (Q10) of SOM decomposition. Phosphorus (P) limited evergreen forest in Guangdong Province, southeastern China, was selected, and N deposition (factor level: N (100 kg N ha-1 y-1 (NH4NO3)) and control (water), arranged into randomized complete block design (n = 3)) was performed during 2.5 y. After that soils from 0 to 20 cm were collected, analyzed for the set of parameters and incubated at 15, and 25, and 35 °C for 112 days. N deposition increased the microbial biomass N and the content of fungal and Gram-positive bacterial biomarkers; activities of beta-glucosidase (BG) and acid phosphatase (ACP) also increased showing the intensification of SOM decomposition. The Q10 of SOM decomposition under N deposition was 1.66 and increased by 1.4 times than under control. Xylosidase (BX), BG, and ACP activities increased with temperature under N but decreased with the incubation duration, indicating either low production and/or decomposition of enzymes. Activities of polyphenol-(PPO) and peroxidases (POD) were higher under N than in the control soil and were constant during the incubation showing the intensification of recalcitrant SOM decomposition. At the early incubation stage (10 days), the increase of Q10 of CO2 efflux was explained by the activities of BX, BQ, ACP, and POD and the quality of the available dissolved organic matter pool. At the later incubation stages (112 days), the drop of Q10 of CO2 efflux was due to the depletion of the labile organic substances and the shift of microbial community structure to K-strategists. Thus, N deposition decoupled the effects of extracellular enzyme activities from microbial community structure on Q10 of SOM decomposition in the subtropical forest soil.


Subject(s)
Ecosystem , Soil , Carbon , Carbon Dioxide , Forests , Nitrogen , Soil/chemistry , Soil Microbiology , Temperature
4.
J Environ Manage ; 342: 118119, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37207458

ABSTRACT

The gap formation due to forest thinning regulates the understorey microclimate, ground vegetation, and soil biodiversity. However, little is known about abundant and rare taxa's various patterns and assemblage mechanisms under thinning gaps. Thinning gaps with increasing sizes (0, 74, 109, and 196 m2) were established 12 years ago in a 36-year-old spruce plantation in a temperate mountain climate. Soil fungal and bacterial communities were analyzed by MiSeq sequencing and related to soil physicochemical properties and aboveground vegetation. The functional microbial taxa were sorted by FAPROTAX and Fungi Functional Guild database. The bacterial community stabilized under varied thinning intensities and was not different from the control plots, whereas the richness of the rare fungal taxa was at least 1.5-fold higher in the large gaps than in the small ones. Total phosphorus and dissolved organic carbon were the main factors influencing microbial communities in soil under various thinning gaps. The diversity and richness of the entire fungal community and rare fungal taxa increased with the understorey vegetation coverage and shrub biomass after thinning. Gap formation by thinning stimulated the understorey vegetation, the rare saprotroph (Undefined Saprotroph), and mycorrhizal fungi (Ectomycorrhizal-Endophyte-Ericoid Mycorrhizal-Litter Saprotroph-Orchid Mycorrhizal and Bryophyte Parasite-Lichen Parasite-Ectomycorrhizal-Ericoid Mycorrhizal-Undefined Saprotroph), which may accelerate nutrient cycling in forest ecosystems. However, the abundance of Endophyte-Plant Pathogens increased by eight times, which showed the potential risk for the artificial spruce forests. Thus, fungi may be the driving force of forest restoration and nutrient cycling under the increasing intensity of thinning and may induce plant diseases. Therefore, vegetation coverage and microbial functional diversity should be considered to evaluate the sustainability of the artificial forest ecosystem and forest restoration.


Subject(s)
Microbiota , Mycorrhizae , Ecosystem , Soil/chemistry , Forests , Biomass , Bacteria , Soil Microbiology , Fungi
5.
Sci Total Environ ; 889: 164245, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37211099

ABSTRACT

Amino acids and peptides are important regulators of ecosystem functioning due to their potential role as direct nutrient sources for plants and soil microbes. However, the turnover and driving factors of these compounds in agricultural soils remain poorly understood. This study aimed to reveal the short-term fate of 14C-labeled alanine and tri-alanine derived C under flooding conditions of the top (0-20 cm) and sub-horizons (20-40 cm) of subtropical paddy soils taken from four long-term (31 years since treatment) nitrogen (N) fertilization regimes (i.e., without fertilization, NPK, NPK with straw return (NPKS) or with manure (NPKM)). Amino acid mineralization was strongly affected by the N fertilization regime and soil depth, while peptide mineralization was only distinct between soil layers. The average half-life of amino acid and peptide in the topsoil was 8 h across all treatments, which was higher than previously reported in uplands. The microbial turnover of amino acid and peptide was 7-10 times slower in the subsoil than in the topsoil, with a half-life of about 2-3 days. The half-life of amino acid and peptide for the respired pool was strongly associated with soil physicochemical characteristics, the total biomass, and the structure of soil microbial communities. The N fertilization regime and soil depth affected the substrate uptake rate by microorganisms, with greater uptake observed in the NPKS and NPKM treatments and the topsoil. Microbial amino acid uptake was correlated with the biomass of total and individual microbial groups, whereas microbial peptide uptake was associated with the soil microbial community structure and physicochemical characteristics. This suggests that there are various pathways of amino acid and peptide use by microorganisms under flooding conditions. We conclude that microbial mineralization of amino acid and its peptide in paddy soils under flooding conditions is slower than in upland soils, and that microbial uptake of these substrates is related to soil abiotic factors and the biomass and structure of soil microbial community. These findings have important implications for understanding nutrient cycling and ecosystem functioning in agricultural soils.


Subject(s)
Oryza , Soil , Soil/chemistry , Ecosystem , Amino Acids , Fertilizers/analysis , Soil Microbiology , Oryza/chemistry , Agriculture , Alanine , Nitrogen/analysis , Fertilization
6.
Sci Total Environ ; 858(Pt 3): 159953, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36368393

ABSTRACT

The formation and stability of soil organic matter (SOM) is crucial for food security, soil health, and climate change mitigation. Although various SOM stabilization mechanisms have been proposed and investigated, the contribution of plant- and microbial-derived carbon into physical and chemical stabilization processes remain unclear. Therefore, this study investigates lignin phenols, microbial necromass, soil aggregation and SOM chemical composition under three cropland management and two natural restoration strategies: NPK, NPK + manure (NPK + M) and NPK + peat vermiculite (NPK + PV) after 5 years, and natural restoration for 10 and 40 years (NR10 and NR40, respectively). Addition of manure or peat vermiculite and NR40 increased soil organic carbon (SOC) by 86-122 % and 16 %, respectively, compared to the NPK fertilization. Lignin phenols and bacterial necromass-C were the highest under NPK + M, and lignin phenols increased by 0.07 g and microbial necromass-C by 0.44 g with each additional 1 g of SOC. Fungal necromass-C in NPK + PV was 0.14-1.1 times higher than in other treatments. The mean weight diameter of aggregates was the highest, while macroaggregate turnover was the slowest under NPK + PV, indicating increased soil aggregation and physical stability. Natural restoration reduced lignin phenols by 33-40 % and labile O-alkyl C by 4-9 %, but increased resistant alkyl C by 9-15 % compared with other treatments, reflecting the highest chemical stability. High fungal necromass was beneficial to the accumulation of particulate and mineral-associated C and aggregate stability, and decelerated macroaggregate turnover. Aromatic C increased but aliphatic-C/aromatic-C decreased with increasing fungal necromass-C. Consequently, fungal necromass C increases SOM physical stability by slowing aggregate turnover and enhances the chemical stability through the accumulation of recalcitrant C under improved cropland management and natural restoration.


Subject(s)
Carbon , Soil
7.
Sci Total Environ ; 824: 153878, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35167890

ABSTRACT

Understanding carbon (C) and nitrogen (N) sequestration in diversified cropping systems provides a pivotal insight for soil health management. Here, the soil was sampled from an ongoing field experiment (five years) with three cropping systems: i) winter wheat/summer maize, ii) winter wheat/summer maize-early soybean, and iii) fallow. We evaluated C and N stocks in aggregates for topsoil (0-20 cm) and subsoil (20-40 cm) depending on cropping systems by comparison of three aggregate fractionation methods (dry, optimal-moisture, and wet sieving). Although the fertilizer application rate for wheat/maize was twice as much as for wheat/maize-soybean, this resulted in similar C and N stocks in the topsoil. The N stock, however, was 13% higher under wheat/maize-soybean than under wheat/maize in the subsoil due to N2 fixation by soybean. The C and N stocks decreased by 22% and 12% under fallow compared to wheat/maize in the topsoil. The wheat/maize-soybean cropping system increased soil aggregates size when estimated by dry and optimal-moisture fractionations. The aggregate size distribution shifted from the dominance of large (> 2 mm) toward small macroaggregates (0.25-2 mm) with increasing moisture used by fractionation due to the low stability of large macroaggregates. Thus, the combination of dry and optimal-moisture sieving is the preferred method to characterize aggregate stability. Overall, diversified cropping systems increase soil aggregation and stability, thus have great potential to enhance soil C and N stocks.


Subject(s)
Agriculture , Fertilizers , Agriculture/methods , Carbon/analysis , China , Nitrogen/analysis , Soil , Zea mays
8.
Glob Chang Biol ; 28(7): 2169-2182, 2022 04.
Article in English | MEDLINE | ID: mdl-34978126

ABSTRACT

In this concept paper, we propose a new view on soil organic matter (SOM) formation: microorganisms use most of the organics entering the soil as energy rather than as a source of carbon (C), while SOM accumulates as a residual by-product because the microbial energy investment in its decomposition exceeds the energy gain. During the initial stages of decomposition, the nominal oxidation state of C (NOSC) in remaining litter decreases, and the energy content increases. This reflects the rapid mineralization of available compounds with positive and neutral NOSC (carboxylic acids, sugars, some amino acids). Consequently, the NOSC of the remaining compounds drops to -0.3 units, and the oxidation rate decreases due to the residual relative accumulation of aromatic and aliphatic compounds (which are hydrolized later) and entombment of the necromass. Ultimately, incompletely decomposed plant residues will have 1%-2.5% more energy per C unit than the initial litter. The linear decrease in energy density of a broad range of organic substances by 106 kJ mol-1 C per NOSC unit upon oxidation is supported by experimental data on litter decomposition. Preferential recycling of energy-rich reduced (lipids, aromatics, certain amino acids, amino sugars) and the microbial degradation of oxidized compounds (carboxylic acids) also energetically enrich SOM. Despite the high energy content, the availability of energy stored in SOM is lower than in litter. This explains why SOM is not fully mineralized (thermodynamically unfavorable), especially in the absence of plant C to provide new energy (e.g., in bare soil). Energy from litter activates decomposers to mine nutrients stored in SOM (the main ecological function of priming effects) because the nutrient content in SOM is 2-5 times higher than that of litter. This results in only 0.4%-5% year-1 of litter-derived C being sequestered in SOM, whereas SOM stores 1%-10% year-1 of the total litter-derived energy. Thus, the energy captured by photosynthesis is the main reason why microorganisms utilize organic matter, whereby SOM is merely a residual by-product of nutrient storage and a mediator of energy fluxes.


Subject(s)
Soil Microbiology , Soil , Amino Acids , Carbon/metabolism , Carboxylic Acids , Plants/metabolism , Soil/chemistry
9.
Front Plant Sci ; 13: 1093507, 2022.
Article in English | MEDLINE | ID: mdl-36714782

ABSTRACT

Introduction: Intercropping has a potential to reduce the CO2 emission from farmlands. Limited information is available on the underlying reasons. Methods: This study investigated the effect of milk vetch (Astragalus sinicus L.) (MV), rapeseed (Brassica napus L.) monoculture (RS) and intercropping (Intercrop) on soil CO2 emissions, moisture and temperature in a bucket experiment during 210 days from October 2015 to May 2016 on Chongqing, China. Results: The results showed that soil CO2 efflux of MV, RS and Intercrop was 1.44, 1.55 and 2.08 µmol·m-2·s-1 during seedling and stem elongation stages and 3.08, 1.59 and 1.95 µmol·m-2·s-1 during flowering and podding stages. At seeding and stem elongation stages Intercrop had 1.4 times higher soil CO2 efflux than the mean of MV and RS. In contrast, MVhad 1.6 times higher soil CO2 efflux than Intercrop thereafter, which shows it was inhibited if milk vetch presents as Intercrop only. Decreased sensitivity of soil respiration to temperature in 1.4 times and lower soil moisture by Intercrop were found compared to MV. Intercrop decreased soil moisture, especially at the seedling and stem elongation stages, compared to the monoculture. The fluctuation on soil respiration in RS and Intercrop was slight with changes in soil moisture. Conclusion: Thus, milk vetch-rapeseed system has a potential to decrease CO2 emission from farmland, however soil moisture should be regulated properly.

10.
Environ Microbiol ; 23(8): 4631-4645, 2021 08.
Article in English | MEDLINE | ID: mdl-34190385

ABSTRACT

Diversity and community composition of soil microorganisms along the elevation climosequences have been widely studied, while the microbial metabolic potential, particularly in regard to carbon (C) cycling, remains unclear. Here, a metagenomic analysis of C related genes along five elevations ranging from 767 to 4190 m at Mount Kilimanjaro was analysed to evaluate the microbial organic C transformation capacities in various ecosystems. The highest gene abundances for decomposition of moderate mineralizable compounds, i.e. carbohydrate esters, chitin and pectin were found at the mid-elevations with hump-shaped pattern, where the genes for decompositions of recalcitrant C (i.e. lignin) and easily mineralizable C (i.e. starch) showed the opposite trend (i.e. U-shaped pattern), due to high soil pH and seasonality in both low and high elevations. Notably, the gene abundances for the decompositions of starch, carbohydrate esters, chitin and lignin had positive relationships with corresponding C compounds, indicating the consistent responses of microbial functional profiles and metabolites to elevation climosequences. Understanding of adaptation of microbial communities, potential function and metabolites to elevation climosequences and their influencing factors provided a new insight for the regulation of terrestrial C storage.


Subject(s)
Microbiota , Soil , Carbon , Microbiota/genetics , Soil Microbiology , Tanzania
11.
Environ Pollut ; 281: 117026, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33813196

ABSTRACT

Biochar may variably impact nitrogen (N) transformation and N-cycle-related microbial activities. Yet the mechanism of biochar amendment on nitrous oxide (N2O) emissions from agricultural ecosystems remains unclear. Based on a 6-year long-term biochar amendment experiment, we applied a dual isotope (15N-18O) labeling technique with tracing transcriptional genes to differentiate the contribution of nitrifier nitrification (NN), nitrifier denitrification (ND), nitrification-coupled denitrification (NCD) and heterotrophic denitrification (HD) pathway to N2O production. Then the field experiment provided quantitative data on dynamic N2O emissions, soil mineral N and key functional marker gene abundances during the wheat growing season. By using 15N-18O isotope, biochar decreased N2O emission derived from ND (by 45-94%), HD (by 35-46%) and NCD (by 30-64%) compared to the values under N application. Biochar increased the relative contribution of NN to total N2O production as evidenced by the increase in ammonia-oxidizing bacteria, but did not influence the cumulative NN-derived N2O. The field experiment found that the majority of the N2O emissions peaked following fertilization, in parallel with soil NH4+ and nitrite dynamics. Soil N2O emissions during the wheat growing stage were effectively decreased (by 38-48%) by biochar amendment. Based on the correlation analyses and random forest analysis in both microcosm and field experiments, the decrease in nitrite concentration (by 62-65%) and increase in N2O consumption were mainly responsible for net N2O mitigation, as evidenced by the decrease in the ratios of nitrite reductase genes/transcripts (nirS, nirK and fungal nirK) and N2O reductase gene/transcripts (nosZI and nosZII). Based on the extrapolation from microcosm to field, biochar significantly mitigated N2O emissions by weakening the ND processes, since NCD and HD contributed little during the N2O emission "peaks" following urea fertilization. Therefore, emphasis should be put on the ND process and nitrite accumulation during N2O emission peaks and extrapolated to all agroecosystems.


Subject(s)
Soil Microbiology , Triticum , Charcoal , Denitrification , Ecosystem , Nitrous Oxide/analysis , Seasons , Soil
12.
Sci Total Environ ; 735: 139393, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32492566

ABSTRACT

Biochar (BC) and nitrogen (N) fertilizers are frequently applied to improve soil properties and increase crop productivity. Nonetheless, our mechanistic understanding of plant-soil interactions under single or combined application of BC and N remains incomplete. For the first time, we applied a split-root system to evaluate how BC or N contributes to the changes in soil enzyme activities, N and phosphorus (P) cycling as well as root plasticity. Left and right parts of rhizoboxes were filled with silty-clay loamy soil amended with BC (15 g kg-1 soil, from wheat straw, 300 °C), N (0.05 g KNO3-N kg-1 soil) or a control (no amendments), resulting in the following combinations: BC/Control, N/Control, BC/N. Soil enzyme activities, available N and P, root morphology and plant biomass were analyzed after plant harvest. Plant biomass (shoot + root) ranged from 0.56 g pot-1 (BC/Control) to 0.91 g pot-1(BC/N). The decreased soil bulk density and increased P availability in the BC compartment (BC/Control and BC/N) stimulated root length by 1.4-1.8 times - an effect that was independent of N availability in the same rhizobox. Biochar stimulated activities of ß-glucosidase and leucine aminopeptidase (by 33-39%) compared to N due to the coupling of C, N and P cycles in BC/N treated soil. Nitrogen fertilization also increased ß-glucosidase activity compared to the unfertilized control, whereas root elongation remained unaffected. Thus, the combined application of BC/N had more efficient benefits for plant growth than BC or N alone. This is linked with i) the stimulation of enzyme activities at the BC locations to reduce N limitation for both microorganisms and plants, and ii) an increase of fine root production to improve N uptake efficiency. Thus, combined BC/N application is potentially especially sustainable to overcome nutrient limitation as well as to maintain crop productivity because it accelerates root-microbial interactions.


Subject(s)
Charcoal , Nitrogen/analysis , Fertilizers , Soil
13.
Environ Microbiol ; 22(8): 3287-3301, 2020 08.
Article in English | MEDLINE | ID: mdl-32436332

ABSTRACT

Microbial elevational diversity patterns have been extensively studied, but their shaping mechanisms remain to be explored. Here, we examined soil bacterial and fungal diversity and community compositions across a 3.4 km elevational gradient (consists of five elevations) on Mt. Kilimanjaro located in East Africa. Bacteria and fungi had different diversity patterns across this extensive mountain gradient-bacterial diversity had a U shaped pattern while fungal diversity monotonically decreased. Random forest analysis revealed that pH (12.61% importance) was the most important factor affecting bacterial diversity, whereas mean annual temperature (9.84% importance) had the largest impact on fungal diversity, which was consistent with results obtained from mixed-effects model. Meanwhile, the diversity patterns and drivers of those diversity patterns differ among taxonomic groups (phyla/classes) within bacterial or fungal communities. Taken together, our study demonstrated that bacterial and fungal diversity and community composition responded differently to climate and edaphic properties along an extensive mountain gradient, and suggests that the elevational diversity patterns across microbial groups are determined by distinct environmental variables. These findings enhanced our understanding of the formation and maintenance of microbial diversity along elevation, as well as microbial responses to climate change in montane ecosystems.


Subject(s)
Altitude , Bacteria/classification , Biodiversity , Fungi/classification , Bacteria/genetics , Climate Change , Ecosystem , Fungi/genetics , Microbiota , Soil/chemistry , Soil Microbiology , Tanzania , Temperature
14.
Sci Total Environ ; 680: 181-189, 2019 Aug 25.
Article in English | MEDLINE | ID: mdl-31121498

ABSTRACT

Various organic amendments are scrutinized as potential agricultural management strategies to ensure soil productivity while mitigating climate change due to the accumulation of soil organic matter (OM). The objectives of this experiment were to study the effects of biochar and biogas digestate versus mineral fertilizer on crop aboveground biomass as well as fractions and mineralization of soil organic carbon (SOC). Samples of a sandy Cambisol were taken 14 months after establishment of a field experiment in Germany. Treatments included application of equal nitrogen in the form of mineral fertilizer or liquid biogas digestate without biochar (B0), with 1 Mg biochar ha-1season-1 for two growing seasons (B2), or with 40 Mg biochar ha-1 application (B40). Soil fractionation in water separated water-extractable and free particulate (fPOM) OM, followed by sonification and sieving to isolate occluded particulate (oPOM) and < 20 µm aggregate-occluded and mineral-associated OM. CO2 emissions were measured during 92-day laboratory incubations at 10 and 20 °C. Analysis of variance found digestate lowered (p < 0.05) rye aboveground biomass compared to mineral fertilizer (9.3 vs. 10.6 Mg ha-1), while biochar had no effect. B40 treatments increased C mineralization during incubation by 16% and contained 3.8 times more SOC than B0 treatments. This additional SOC was allocated to fPOM (52%), oPOM (22%), and the <20 µm fraction (26%). Digestate application increased SOC content of oPOM by 11% compared to mineral fertilizer. Furthermore, combined application of 40 Mg biochar ha-1 with digestate resulted in 20% more SOC in the <20 µm fraction than biochar with mineral fertilizer. The lack of a significant fertilizer or biochar-fertilizer interaction effect on C mineralization during incubation demonstrates the stability of SOC from digestate alone or in combination with biochar. The absence of significant differences in SOC content between B0 and B2 treatments demonstrates the difficulty of documenting SOC sequestration in the field at low biochar application rates.


Subject(s)
Agriculture/methods , Fertilizers , Biofuels , Biomass , Carbon/analysis , Carbon Sequestration , Charcoal , Germany , Minerals , Nitrogen/analysis , Soil
15.
Soil Tillage Res ; 186: 214-223, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31007318

ABSTRACT

A better understanding of the fate and transport of fertilizer nitrogen (N) is critical to maximize crop yields and minimize negative environmental impacts. Plastic film mulching is widely used in drylands to increase soil water use efficiency and crop yields, but the effects on fertilizer N use efficiency need to be evaluated. A field experiment with 15N-urea (260 kg N ha-1) was conducted to determine the fate and transport of fertilizer N in a ridge-furrow system with plastic film mulched ridge (Plastic), compared with a flat system without mulching (Open). In the Plastic, the 15N-urea was applied to the ridge only (Plastic-Ridge), or to the furrow only (Plastic-Furrow). Maize grain yield and net economic benefit for Plastic were significantly higher (by 9.7 and 8.5%, respectively) than those for Open. Total plant 15N uptake was 72.5% greater in Plastic compared with Open, and 15N was allocated mostly to the grain. Losses of the applied urea-N were 54.5% lower in Plastic and much more residual 15N was recovered in 0-120 cm soil compared with Open (42.7 and 26.8% of applied 15N, respectively). Lateral N movements from furrow to ridge and from ridge to furrow were observed and attributed to lateral movement of soil water due to microtopography of ridges and furrows and uneven soil water and heat conditions under mulching and plant water uptake. The ridges were the main N fertilizer source for plant uptake (96.5 and 3.5% of total N uptake in Plastic from ridge and furrow, respectively) and the furrow was the main source of N losses (78.6 and 21.4% of total N losses in Plastic from furrow and ridge, respectively). Gas emissions, especially ammonia volatilization was probably the main N loss in furrow. Thus, appropriately localized N application - into the ridges, and management strategies should be designed for Plastic to maximize N use efficiency by crops, decrease N gas losses and maintain sustainable agricultural systems in drylands.

16.
Sci Total Environ ; 634: 963-973, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29660890

ABSTRACT

Initial changes in soil structure and C stocks were studied under short-rotation coppices (SRC) planted on former cropland near Göttingen, Central Germany. Plantations were established either as monocultures with willow (Willow-SRC) or poplar (Poplar-SRC), or as an agroforestry system with willow strips and grassland alleys in between (Willow-AF). A neighbouring cropland served as a control. Three sampling campaigns were applied in this study. The first sampling was conducted at a fine scale to reveal the differences in soil C with depth (i.e. 0-3, 3-6, 6-9, 9-12, 12-15, 15-20, 20-30cm). Here, results indicated the main differences between plantations in 0-3, 3-20 and 20-30cm layers. These soil depths were therefore chosen for the second sampling campaign to reveal differences in aggregate composition, C accumulation in aggregates and density fraction, and microbial biomass carbon (MBC) between plantations. Furthermore, quality of soil organic matter and amount of C mineralised by microorganisms were estimated by an incubation experiment. Results here indicated two times higher CO2 emissions from the top layer than from the lower layers under SRCs, as well as higher MBC in SRCs (490-788.7µgCg-1) than in cropland (266.4µgCg-1). The results of the third sampling on the texture of respective soil horizons indicated a significant correlation (R2=78%) of soil clay to C at 0-3cm depth. It was concluded that aggregation and C in microbial biomass and free light fractions were the first indicators of soil quality improvement after conversion of arable land to SRC plantations.

17.
Rapid Commun Mass Spectrom ; 28(6): 569-76, 2014 Mar 30.
Article in English | MEDLINE | ID: mdl-24519819

ABSTRACT

RATIONALE: Amino sugars build up microbial cell walls and are important components of soil organic matter. To evaluate their sources and turnover, δ(13)C analysis of soil-derived amino sugars by liquid chromatography was recently suggested. However, amino sugar δ(13)C determination remains challenging due to (1) a strong matrix effect, (2) CO2 -binding by alkaline eluents, and (3) strongly different chromatographic behavior and concentrations of basic and acidic amino sugars. To overcome these difficulties we established an ion chromatography-oxidation-isotope ratio mass spectrometry method to improve and facilitate soil amino sugar analysis. METHODS: After acid hydrolysis of soil samples, the extract was purified from salts and other components impeding chromatographic resolution. The amino sugar concentrations and δ(13)C values were determined by coupling an ion chromatograph to an isotope ratio mass spectrometer. The accuracy and precision of quantification and δ(13)C determination were assessed. RESULTS: Internal standards enabled correction for losses during analysis, with a relative standard deviation <6%. The higher magnitude peaks of basic than of acidic amino sugars required an amount-dependent correction of δ(13)C values. This correction improved the accuracy of the determination of δ(13)C values to <1.5‰ and the precision to <0.5‰ for basic and acidic amino sugars in a single run. CONCLUSIONS: This method enables parallel quantification and δ(13)C determination of basic and acidic amino sugars in a single chromatogram due to the advantages of coupling an ion chromatograph to the isotope ratio mass spectrometer. Small adjustments of sample amount and injection volume are necessary to optimize precision and accuracy for individual soils.


Subject(s)
Amino Sugars/chemistry , Mass Spectrometry/methods , Soil/chemistry , Carbon Isotopes/chemistry , Limit of Detection , Linear Models , Oxidation-Reduction , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...