Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 44(10)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38326038

ABSTRACT

There has been considerable controversy about pre- versus postsynaptic expression of memory-related long-term potentiation (LTP), with corresponding disputes about underlying mechanisms. We report here an instance in male mice, in which both types of potentiation are expressed but in separate branches of the same hippocampal afferent. Induction of LTP in the dentate gyrus (DG) branch of the lateral perforant path (LPP) reduces paired-pulse facilitation, is blocked by antagonism of cannabinoid receptor type 1, and is not affected by suppression of postsynaptic actin polymerization. These observations are consistent with presynaptic expression. The opposite pattern of results was obtained in the LPP branch that innervates the distal dendrites of CA3: LTP did not reduce paired-pulse facilitation, was unaffected by the cannabinoid receptor blocker, and required postsynaptic actin filament assembly. Differences in the two LPP termination sites were also noted for frequency facilitation of synaptic responses, an effect that was reproduced in a two-step simulation by small adjustments to vesicle release dynamics. These results indicate that different types of glutamatergic neurons impose different forms of filtering and synaptic plasticity on their afferents. They also suggest that inputs are routed to, and encoded by, different sites within the hippocampus depending upon the pattern of activity arriving over the parent axon.


Subject(s)
Dentate Gyrus , Long-Term Potentiation , Male , Mice , Animals , Long-Term Potentiation/physiology , Dentate Gyrus/physiology , Excitatory Postsynaptic Potentials/physiology , Hippocampus/metabolism , Neuronal Plasticity/physiology , Electric Stimulation/methods
2.
J Neuroendocrinol ; 30(2)2018 02.
Article in English | MEDLINE | ID: mdl-28905487

ABSTRACT

GABA plays a key role in both embryonic and neonatal brain development. For example, during early neonatal nervous system maturation, synaptic transmission, mediated by GABAA receptors (GABAA Rs), undergoes a temporally specific form of synaptic plasticity to accommodate the changing requirements of maturing neural networks. Specifically, the duration of miniature inhibitory postsynaptic currents (mIPSCs), resulting from vesicular GABA activating synaptic GABAA Rs, is reduced, permitting neurones to appropriately influence the window for postsynaptic excitation. Conventionally, programmed expression changes to the subtype of synaptic GABAA R are primarily implicated in this plasticity. However, it is now evident that, in developing thalamic and cortical principal- and inter-neurones, an endogenous neurosteroid tone (eg, allopregnanolone) enhances synaptic GABAA R function. Furthermore, a cessation of steroidogenesis, as a result of a lack of substrate, or a co-factor, appears to be primarily responsible for early neonatal changes to GABAergic synaptic transmission, followed by further refinement, which results from subsequent alterations of the GABAA R subtype. The timing of this cessation of neurosteroid influence is neurone-specific, occurring by postnatal day (P)10 in the thalamus but approximately 1 week later in the cortex. Neurosteroid levels are not static and change dynamically in a variety of physiological and pathophysiological scenarios. Given that GABA plays an important role in brain development, abnormal perturbations of neonatal GABAA R-active neurosteroids may have not only a considerable immediate, but also a longer-term impact upon neural network activity. Here, we review recent evidence indicating that changes in neurosteroidogenesis substantially influence neonatal GABAergic synaptic transmission. We discuss the physiological relevance of these findings and how the interference of neurosteroid-GABAA R interaction early in life may contribute to psychiatric conditions later in life.


Subject(s)
Brain/metabolism , Neurotransmitter Agents/physiology , Receptors, GABA-A/physiology , Synapses/metabolism , Animals , Brain/growth & development , Neurons/metabolism , Synaptic Transmission/physiology , gamma-Aminobutyric Acid/metabolism
3.
Trends Neurosci ; 40(11): 667-679, 2017 11.
Article in English | MEDLINE | ID: mdl-28916130

ABSTRACT

Stress is a major trigger of seizures in people with epilepsy. Exposure to stress results in the release of several stress mediators throughout the brain, including the hippocampus, a region sensitive to stress and prone to seizures. Stress mediators interact with their respective receptors to produce distinct effects on the excitability of hippocampal neurons and networks. Crucially, these stress mediators and their actions exhibit unique spatiotemporal profiles, generating a complex combinatorial output with time- and space-dependent effects on hippocampal network excitability and seizure generation.


Subject(s)
Hippocampus/physiopathology , Seizures/physiopathology , Stress, Psychological/physiopathology , Animals , Humans , Neural Pathways/physiopathology
4.
Cereb Cortex ; 27(8): 4182-4198, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28460009

ABSTRACT

Memory is strongly influenced by stress but underlying mechanisms are unknown. Here, we used electrophysiology, neuroanatomy, and network simulations to probe the role of the endogenous, stress-related neuropeptide corticotropin-releasing hormone (CRH) in modulating hippocampal function. We focused on neuronal excitability and the incidence of sharp waves (SPWs), a form of intrinsic network activity associated with memory consolidation. Specifically, we blocked endogenous CRH using 2 chemically distinct antagonists of the principal hippocampal CRH receptor, CRHR1. The antagonists caused a modest reduction of spontaneous excitatory transmission onto CA3 pyramidal cells, mediated, in part by effects on IAHP. This was accompanied by a decrease in the incidence but not amplitude of SPWs, indicating that the synaptic actions of CRH are sufficient to alter the output of a complex hippocampal network. A biophysical model of CA3 described how local actions of CRH produce macroscopic consequences including the observed changes in SPWs. Collectively, the results provide a first demonstration of the manner in which subtle synaptic effects of an endogenously released neuropeptide influence hippocampal network level operations and, in the case of CRH, may contribute to the effects of acute stress on memory.


Subject(s)
Corticotropin-Releasing Hormone/metabolism , Hippocampus/metabolism , Synaptic Transmission/physiology , Animals , Computer Simulation , Hippocampus/drug effects , Hippocampus/ultrastructure , Male , Mice, Inbred C57BL , Microscopy, Electron , Models, Neurological , Neural Pathways/drug effects , Neural Pathways/metabolism , Patch-Clamp Techniques , Pyramidal Cells/drug effects , Pyramidal Cells/physiology , Pyramidal Cells/ultrastructure , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Receptors, Corticotropin-Releasing Hormone/metabolism , Synaptic Transmission/drug effects , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL