Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 148(9): 2092-2099, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37009815

ABSTRACT

The development of efficient methods for the detection of T4 DNA ligase is extremely important for public health. The present work demonstrates the integration of engineerable oxidase nanozyme of LaMnO3.26 nanomaterials for the colorimetric detection of T4 DNA ligase. Specifically, the LaMnO3.26 nanomaterials exhibited oxidase-like activity, oxidizing o-phenylenediamine (OPD), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), and 3,3',5,5'-tetramethylbenzidine (TMB) to their corresponding oxidation products, which featured maximum absorption wavelengths at 450, 417 and 650 nm, respectively, while pyrophosphate ion (PPi) caused an obvious decrease in the oxidase-like activity of LaMnO3.26 through its surface coordination with the surface-exposed Mn element and induced aggregation of the nanozyme. Attributed to the PPi regulated oxidase nanozyme activity, LaMnO3.26 served as a colorimetric probe for the quantitative detection of T4 DNA ligase assisted by a hyperbranched amplification reaction for signal amplification. The T4 DNA ligase was detected with a linear range of 4.8 × 10-3 to 6.0 U mL-1, achieving a detection limit of 1.6 × 10-3 U mL-1. The outcome indicated that the developed nanozyme might be extended to a broad range of practical applications.


Subject(s)
Nanostructures , Oxidoreductases , Colorimetry/methods , DNA Ligases , Oxidation-Reduction , Lanthanum/chemistry
2.
Talanta ; 257: 124335, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36821968

ABSTRACT

It is of significance to develop efficient methods for detecting the activity of T4 polynucleotide kinase (T4 PNK) due to its essential role in the modulation of different life activities. In this work, we constructed a novel nanozyme using Kanamycin (KANA) as a trigger for the [Fe(CN)6]3- coordinated Cu2(OH)3NO3 (Cu2(OH)3NO3/[Fe(CN)6]3-) nanorods, and designed an amplified colorimetric method to detect T4 PNK. That was, the free KANA efficiently triggered the peroxidase-like activity of Cu2(OH)3NO3/[Fe(CN)6]3-, while the bound KANA by its aptamer lost the stimulative capability for the nanomaterials. On the basis of the bioreaction regulated generation of the KANA aptamer, a highly sensitive colorimetric assay aided by the rolling circle amplification (RCA) reaction for the detection of T4 PNK was realized. Results showed that this assay can detect T4 PNK from 1.0 × 10-3 to 10.0 U/mL, with a limit of detection (LOD) of 1.42 × 10-4 U/mL. The assay also showed acceptable performance in the detection of T4 PNK in serum samples. In addition to the satisfactory sensitivity and selectivity, the displayed T4 PNK assay also presented merits of operational convenience, without labeling or immobilization process and did not require costly instrument. It is expected that the KANA as a stimulator would have extended biosensing applications by coupling various bioreactions that can produce the KANA aptamer.


Subject(s)
Biosensing Techniques , Polynucleotide 5'-Hydroxyl-Kinase , Polynucleotide 5'-Hydroxyl-Kinase/metabolism , Colorimetry , Bacteriophage T4 , Biosensing Techniques/methods , Limit of Detection , Oligonucleotides , Kanamycin
SELECTION OF CITATIONS
SEARCH DETAIL
...