Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
JCO Clin Cancer Inform ; 8: e2300154, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38231003

ABSTRACT

PURPOSE: To apply deep learning algorithms to histopathology images, construct image-based subtypes independent of known clinical and molecular classifications for glioblastoma, and produce novel insights into molecular and immune characteristics of the glioblastoma tumor microenvironment. MATERIALS AND METHODS: Using whole-slide hematoxylin and eosin images from 214 patients with glioblastoma in The Cancer Genome Atlas (TCGA), a fine-tuned convolutional neural network model extracted deep learning features. Biclustering was used to identify subtypes and image feature modules. Prognostic value of image subtypes was assessed via Cox regression on survival outcomes and validated with 189 samples from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) data set. Morphological, molecular, and immune characteristics of glioblastoma image subtypes were analyzed. RESULTS: Four distinct subtypes and modules (imClust1-4) were identified for the TCGA patients with glioblastoma on the basis of the image feature data. The glioblastoma image subtypes were significantly associated with overall survival (OS; P = .028) and progression-free survival (P = .003). Apparent association was also observed for disease-specific survival (P = .096). imClust2 had the best prognosis for all three survival end points (eg, after 25 months, imClust2 had >7% surviving patients than the other subtypes). Examination of OS in the external validation using the unseen CPTAC data set showed consistent patterns. Multivariable Cox analyses confirmed that the image subtypes carry unique prognostic information independent of known clinical and molecular predictors. Molecular and immune profiling revealed distinct immune compositions of the tumor microenvironment in different image subtypes and may provide biologic explanations for the patterns in patients' outcomes. CONCLUSION: Our image-based subtype classification on the basis of deep learning models is a novel tool to refine risk stratification in cancers. The image subtypes detected for glioblastoma represent a promising prognostic biomarker with distinct molecular and immune characteristics and may facilitate developing novel, individualized immunotherapies for glioblastoma.


Subject(s)
Biological Products , Deep Learning , Glioblastoma , Humans , Glioblastoma/diagnostic imaging , Prognosis , Proteomics , Tumor Microenvironment
2.
Am J Pathol ; 193(12): 2122-2132, 2023 12.
Article in English | MEDLINE | ID: mdl-37775043

ABSTRACT

In digital pathology tasks, transformers have achieved state-of-the-art results, surpassing convolutional neural networks (CNNs). However, transformers are usually complex and resource intensive. This study developed a novel and efficient digital pathology classifier called DPSeq to predict cancer biomarkers through fine-tuning a sequencer architecture integrating horizontal and vertical bidirectional long short-term memory networks. Using hematoxylin and eosin-stained histopathologic images of colorectal cancer from two international data sets (The Cancer Genome Atlas and Molecular and Cellular Oncology), the predictive performance of DPSeq was evaluated in a series of experiments. DPSeq demonstrated exceptional performance for predicting key biomarkers in colorectal cancer (microsatellite instability status, hypermutation, CpG island methylator phenotype status, BRAF mutation, TP53 mutation, and chromosomal instability), outperforming most published state-of-the-art classifiers in a within-cohort internal validation and a cross-cohort external validation. In addition, under the same experimental conditions using the same set of training and testing data sets, DPSeq surpassed four CNNs (ResNet18, ResNet50, MobileNetV2, and EfficientNet) and two transformer (Vision Transformer and Swin Transformer) models, achieving the highest area under the receiver operating characteristic curve and area under the precision-recall curve values in predicting microsatellite instability status, BRAF mutation, and CpG island methylator phenotype status. Furthermore, DPSeq required less time for both training and prediction because of its simple architecture. Therefore, DPSeq appears to be the preferred choice over transformer and CNN models for predicting cancer biomarkers.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Humans , Biomarkers, Tumor/genetics , Proto-Oncogene Proteins B-raf/genetics , Microsatellite Instability , DNA Methylation/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , CpG Islands/genetics
3.
J Pathol Clin Res ; 9(3): 223-235, 2023 05.
Article in English | MEDLINE | ID: mdl-36723384

ABSTRACT

Many artificial intelligence models have been developed to predict clinically relevant biomarkers for colorectal cancer (CRC), including microsatellite instability (MSI). However, existing deep learning networks require large training datasets, which are often hard to obtain. In this study, based on the latest Hierarchical Vision Transformer using Shifted Windows (Swin Transformer [Swin-T]), we developed an efficient workflow to predict biomarkers in CRC (MSI, hypermutation, chromosomal instability, CpG island methylator phenotype, and BRAF and TP53 mutation) that required relatively small datasets. Our Swin-T workflow substantially achieved the state-of-the-art (SOTA) predictive performance in an intra-study cross-validation experiment on the Cancer Genome Atlas colon and rectal cancer dataset (TCGA-CRC-DX). It also demonstrated excellent generalizability in cross-study external validation and delivered a SOTA area under the receiver operating characteristic curve (AUROC) of 0.90 for MSI, using the Molecular and Cellular Oncology dataset for training (N = 1,065) and the TCGA-CRC-DX (N = 462) for testing. A similar performance (AUROC = 0.91) was reported in a recent study, using ~8,000 training samples (ResNet18) on the same testing dataset. Swin-T was extremely efficient when using small training datasets and exhibited robust predictive performance with 200-500 training samples. Our findings indicate that Swin-T could be 5-10 times more efficient than existing algorithms for MSI prediction based on ResNet18 and ShuffleNet. Furthermore, the Swin-T models demonstrated their capability in accurately predicting MSI and BRAF mutation status, which could exclude and therefore reduce samples before subsequent standard testing in a cascading diagnostic workflow, in turn reducing turnaround time and costs.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Humans , Microsatellite Instability , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Proto-Oncogene Proteins B-raf/genetics , Artificial Intelligence , DNA Methylation , Biomarkers , Colonic Neoplasms/genetics
4.
JCO Precis Oncol ; 7: e2200522, 2023 02.
Article in English | MEDLINE | ID: mdl-36848612

ABSTRACT

PURPOSE: Tumor-infiltrating lymphocytes (TILs) have a significant prognostic value in cancers. However, very few automated, deep learning-based TIL scoring algorithms have been developed for colorectal cancer (CRC). MATERIALS AND METHODS: We developed an automated, multiscale LinkNet workflow for quantifying TILs at the cellular level in CRC tumors using H&E-stained images from the Lizard data set with annotations of lymphocytes. The predictive performance of the automatic TIL scores (TILsLink) for disease progression and overall survival (OS) was evaluated using two international data sets, including 554 patients with CRC from The Cancer Genome Atlas (TCGA) and 1,130 patients with CRC from Molecular and Cellular Oncology (MCO). RESULTS: The LinkNet model provided outstanding precision (0.9508), recall (0.9185), and overall F1 score (0.9347). Clear continuous TIL-hazard relationships were observed between TILsLink and the risk of disease progression or death in both TCGA and MCO cohorts. Both univariate and multivariate Cox regression analyses for the TCGA data demonstrated that patients with high TIL abundance had a significant (approximately 75%) reduction in risk for disease progression. In both the MCO and TCGA cohorts, the TIL-high group was significantly associated with improved OS in univariate analysis (30% and 54% reduction in risk, respectively). The favorable effects of high TIL levels were consistently observed in different subgroups (classified according to known risk factors). CONCLUSION: The proposed deep-learning workflow for automatic TIL quantification on the basis of LinkNet can be a useful tool for CRC. TILsLink is likely an independent risk factor for disease progression and carries predictive information of disease progression beyond the current clinical risk factors and biomarkers. The prognostic significance of TILsLink for OS is also evident.


Subject(s)
Colorectal Neoplasms , Lymphocytes, Tumor-Infiltrating , Humans , Prognosis , Disease Progression , Colorectal Neoplasms/diagnosis
5.
Comput Med Imaging Graph ; 105: 102189, 2023 04.
Article in English | MEDLINE | ID: mdl-36739752

ABSTRACT

Self-attention mechanism-based algorithms are attractive in digital pathology due to their interpretability, but suffer from computation complexity. This paper presents a novel, lightweight Attention-based Multiple Instance Mutation Learning (AMIML) model to allow small-scale attention operations for predicting gene mutations. Compared to the standard self-attention model, AMIML reduces the number of model parameters by approximately 70%. Using data for 24 clinically relevant genes from four cancer cohorts in TCGA studies (UCEC, BRCA, GBM, and KIRC), we compare AMIML with a standard self-attention model, five other deep learning models, and four traditional machine learning models. The results show that AMIML has excellent robustness and outperforms all the baseline algorithms in the vast majority of the tested genes. Conversely, the performance of the reference deep learning and machine learning models vary across different genes, and produce suboptimal prediction for certain genes. Furthermore, with the flexible and interpretable attention-based pooling mechanism, AMIML can further zero in and detect predictive image patches.


Subject(s)
Algorithms , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL