Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
2.
Appl Environ Microbiol ; 90(5): e0041824, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38624198

ABSTRACT

Cyclic di-GMP (c-di-GMP) is a crucial signaling molecule found extensively in bacteria, involved in the regulation of various physiological and biochemical processes such as biofilm formation, motility, and pathogenicity through binding to downstream receptors. However, the structural dissimilarity of c-di-GMP receptor proteins has hindered the discovery of many such proteins. In this study, we identified LspE, a homologous protein of the type II secretion system (T2SS) ATPase GspE in Lysobacter enzymogenes, as a receptor protein for c-di-GMP. We identified the more conservative c-di-GMP binding amino acid residues as K358 and T359, which differ from the previous reports, indicating that GspE proteins may represent a class of c-di-GMP receptor proteins. Additionally, we found that LspE in L. enzymogenes also possesses a novel role in regulating the production of the antifungal antibiotic HSAF. Further investigations revealed the critical involvement of both ATPase activity and c-di-GMP binding in LspE-mediated regulation of HSAF (Heat-Stable Antifungal Factor) production, with c-di-GMP binding having no impact on LspE's ATPase activity. This suggests that the control of HSAF production by LspE encompasses two distinct processes: c-di-GMP binding and the inherent ATPase activity of LspE. Overall, our study unraveled a new function for the conventional protein GspE of the T2SS as a c-di-GMP receptor protein and shed light on its role in regulating antibiotic production.IMPORTANCEThe c-di-GMP signaling pathway in bacteria is highly intricate. The identification and functional characterization of novel receptor proteins have posed a significant challenge in c-di-GMP research. The type II secretion system (T2SS) is a well-studied secretion system in bacteria. In this study, our findings revealed the ATPase GspE protein of the T2SS as a class of c-di-GMP receptor protein. Notably, we discovered its novel function in regulating the production of antifungal antibiotic HSAF in Lysobacter enzymogenes. Given that GspE may be a conserved c-di-GMP receptor protein, it is worthwhile for researchers to reevaluate its functional roles and mechanisms across diverse bacterial species.


Subject(s)
Adenosine Triphosphatases , Bacterial Proteins , Cyclic GMP , Lysobacter , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Lysobacter/metabolism , Lysobacter/genetics , Lysobacter/enzymology , Type II Secretion Systems/metabolism , Type II Secretion Systems/genetics , Anti-Bacterial Agents/metabolism , Gene Expression Regulation, Bacterial , Antifungal Agents/metabolism
3.
Int J Biol Macromol ; 261(Pt 1): 129744, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281534

ABSTRACT

Fusarium graminearum is a dominant phytopathogenic fungus causing Fusarium head blight (FHB) in cereal crops. Heat-stable antifungal factor (HSAF) is a polycyclic tetramate macrolactam (PoTeM) isolated from Lysobacter enzymogenes that exhibits strong antifungal activity against F. graminearum. HSAF significantly reduces the DON production and virulence of F. graminearum. Importantly, HSAF exhibited no cross-resistance to carbendazim, phenamacril, tebuconazole and pydiflumetofen. However, the target protein of HSAF in F. graminearum is unclear. In this study, the oxysterol-binding protein FgORP1 was identified as the potential target of HSAF using surface plasmon resonance (SPR) combined with RNA-sequence (RNA-seq). The RNA-seq results showed cell membrane and ergosterol biosynthesis were significantly impacted by HSAF in F. graminearum. Molecular docking showed that HSAF binds with arginine 1205 and glutamic acid 1212, which are located in the oxysterol-binding domain of FgORP1. The two amino acids in FgORP1 are responsible for HSAF resistance in F. graminearum though site-directed mutagenesis. Furthermore, deletion of FgORP1 led to significantly decreased sensitivity to HSAF. Additionally, FgORP1 regulates the mycelial growth, conidiation, DON production, ergosterol biosynthesis and virulence in F. graminearum. Overall, our findings revealed the mode of action of HSAF against F. graminearum, indicating that HSAF is a promising fungicide for controlling FHB.


Subject(s)
Fusarium , Oxysterols , Antifungal Agents/chemistry , Fusarium/physiology , Hot Temperature , Molecular Docking Simulation , Cell Membrane/metabolism , Ergosterol , Plant Diseases/microbiology
4.
J Agric Food Chem ; 71(41): 15003-15016, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37812568

ABSTRACT

Heat-stable antifungal factor (HSAF) isolated from Lysobacter enzymogenes is considered a potential biocontrol agent. However, the target of HSAF in phytopathogenic fungi remains unclear. In this study, we investigated the target of HSAF in Valsa pyri that causes fatal pear Valsa canker. Thirty-one HSAF-binding proteins were captured and identified by surface plasmon resonance (SPR) and high-performance liquid chromatography-mass spectrometry (LC-MS/MS), and 11 deletion mutants were obtained. Among these mutants, only ΔVpVEB1 showed decreased sensitivity to HSAF. Additionally, ΔVpVEB1 exhibited significantly reduced virulence in V. pyri. Molecular docking and SPR results revealed that HSAF bound to threonine 569 and glycine 570 of VpVeb1, which are crucial for AAA ATPase activity. Another study showed that HSAF could decrease the ATPase activity of VpVeb1, leading to the reduced virulence of V. pyri. Taken together, this study first identified the potential target of HSAF in fungi. These findings will help us better understand the model of action of HSAF to fungi.


Subject(s)
Antifungal Agents , Bacterial Proteins , Antifungal Agents/pharmacology , Bacterial Proteins/metabolism , Chromatography, Liquid , Molecular Docking Simulation , Tandem Mass Spectrometry , Fungi/metabolism
5.
Microbiol Spectr ; 11(3): e0487222, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37166326

ABSTRACT

Myxin, a di-N-oxide phenazine isolated from the soil bacterium Lysobacter antibioticus, exhibits potent activity against various microorganisms and has the potential to be developed as an agrochemical. Antibiotic-producing microorganisms have developed self-resistance mechanisms to protect themselves from autotoxicity. Antibiotic efflux is vital for such protection. Recently, we identified a resistance-nodulation-division (RND) efflux pump, LexABC, involved in self-resistance against myxin in L. antibioticus. Expression of its genes, lexABC, was induced by myxin and was positively regulated by the LysR family transcriptional regulator LexR. The molecular mechanisms, however, have not been clear. Here, LexR was found to bind to the lexABC promoter region to directly regulate expression. Moreover, myxin enhanced this binding. Molecular docking and surface plasmon resonance analysis showed that myxin bound LexR with valine and lysine residues at positions 146 (V146) and 195 (K195), respectively. Furthermore, mutation of K195 in vivo led to downregulation of the gene lexA. These results indicated that LexR sensed and bound with myxin, thereby directly activating the expression of the LexABC efflux pump and increasing L. antibioticus resistance against myxin. IMPORTANCE Antibiotic-producing bacteria exhibit various sophisticated mechanisms for self-protection against their own secondary metabolites. RND efflux pumps that eliminate antibiotics from cells are ubiquitous in Gram-negative bacteria. Myxin is a heterocyclic N-oxide phenazine with potent antimicrobial and antitumor activities produced by the soil bacterium L. antibioticus. The RND pump LexABC contributes to the self-resistance of L. antibioticus against myxin. Herein, we report a mechanism involving the LysR family regulator LexR that binds to myxin and directly activates the LexABC pump. Further study on self-resistance mechanisms could help the investigation of strategies to deal with increasing bacterial antibiotic resistance and enable the discovery of novel natural products with resistance genes as selective markers.


Subject(s)
Bacterial Proteins , Oxides , Bacterial Proteins/metabolism , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Phenazines/pharmacology
6.
Mol Plant Pathol ; 24(5): 452-465, 2023 05.
Article in English | MEDLINE | ID: mdl-36829260

ABSTRACT

Avoiding the host defence system is necessary for the survival of pathogens. However, the mechanisms by which pathogenic bacteria sense and resist host defence signals are still unknown. Sulforaphane (SFN) is a secondary metabolite of crucifers. It not only plays an important role in maintaining the local defence response but also directly inhibits the growth of some pathogens. In this study, we identified a key SFN tolerance-related gene, saxF, in Xanthomonas campestris pv. campestris (Xcc), the causal agent of black rot in crucifers. More interestingly, we found that the transcription of saxF was regulated by the novel transcription factor SFN-sensing transcription factor (SstF). As a LysR family transcription factor, SstF can sense SFN and regulate the expression of saxF cluster genes to increase SFN resistance by directly binding to the promoter of saxF. In addition, we found that SstF and saxF also play an important role in positively regulating the virulence of Xcc. Collectively, our results illustrate a previously unknown mechanism by which Xcc senses the host defence signal SFN and activates the expression of SFN tolerance-related genes to increase virulence. Therefore, this study provides a remarkable result; that is, during pathogen-plant co-evolution, new functions of existing scaffolds are activated, thus improving the proficiency of the pathogenic mechanism.


Subject(s)
Transcription Factors , Xanthomonas campestris , Virulence/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Isothiocyanates/pharmacology , Gene Expression Regulation, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Plant Diseases/microbiology
7.
Trends Parasitol ; 39(1): 7-9, 2023 01.
Article in English | MEDLINE | ID: mdl-36443162

ABSTRACT

Vitamin deficiencies are known to cause disorders in human beings. Siddique et al. discovered that vitamin B5 biosynthesis in cyst nematodes requires steps in their host plants. Disruption of an Arabidopsis thaliana 'susceptibility gene', which is involved in the production of vitamin B5 precursors, results in reduced parasitism.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Nematoda , Animals , Humans , Pantothenic Acid , Nematoda/genetics , Arabidopsis/genetics
8.
Mol Plant Pathol ; 23(10): 1508-1523, 2022 10.
Article in English | MEDLINE | ID: mdl-35942507

ABSTRACT

Plant secondary metabolites perform numerous functions in the interactions between plants and pathogens. However, little is known about the precise mechanisms underlying their contribution to the direct inhibition of pathogen growth and virulence in planta. Here, we show that the secondary metabolite sulforaphane (SFN) in crucifers inhibits the growth, virulence, and ability of Xanthomonas species to adapt to oxidative stress, which is essential for the successful infection of host plants by phytopathogens. The transcription of oxidative stress detoxification-related genes (catalase [katA and katG] and alkylhydroperoxide-NADPH oxidoreductase subunit C [ahpC]) was substantially inhibited by SFN in Xanthomonas campestris pv. campestris (Xcc), and this phenomenon was most obvious in sax gene mutants sensitive to SFN. By performing microscale thermophoresis (MST) and electrophoretic mobility shift assay (EMSA), we observed that SFN directly bound to the virulence-related redox-sensing transcription factor OxyR and weakened the ability of OxyR to bind to the promoters of oxidative stress detoxification-related genes. Collectively, these results illustrate that SFN directly targets OxyR to inhibit the bacterial adaptation to oxidative stress, thereby decreasing bacterial virulence. Interestingly, this phenomenon occurs in multiple Xanthomonas species. This study provides novel insights into the molecular mechanisms by which SFN limits Xanthomonas adaptation to oxidative stress and virulence, and the findings will facilitate future studies on the use of SFN as a biopesticide to control Xanthomonas.


Subject(s)
Xanthomonas campestris , Xanthomonas , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Hydrogen Peroxide/metabolism , Isothiocyanates , Oxidative Stress , Sulfoxides , Virulence/genetics , Xanthomonas campestris/metabolism
9.
Trends Biochem Sci ; 47(10): 819-821, 2022 10.
Article in English | MEDLINE | ID: mdl-35792034

ABSTRACT

The plant hormone salicylic acid (SA) receptor NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) plays a critical role for plant defense against biotrophic and hemi-biotrophic pathogens. In a milestone paper, Kumar, Zavaliev, Wu et al. unraveled the structural basis for the assembly of an enhanceosome by NPR1 in activating the expression of plant defense genes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Animals , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Birds/metabolism , Plants/metabolism , Salicylic Acid/metabolism
10.
PLoS Pathog ; 17(11): e1010104, 2021 11.
Article in English | MEDLINE | ID: mdl-34843607

ABSTRACT

In plants, the apoplast is a critical battlefield for plant-microbe interactions. Plants secrete defense-related proteins into the apoplast to ward off the invasion of pathogens. How microbial pathogens overcome plant apoplastic immunity remains largely unknown. In this study, we reported that an atypical RxLR effector PsAvh181 secreted by Phytophthora sojae, inhibits the secretion of plant defense-related apoplastic proteins. PsAvh181 localizes to plant plasma membrane and essential for P. sojae infection. By co-immunoprecipitation assay followed by liquid chromatography-tandem mass spectrometry analyses, we identified the soybean GmSNAP-1 as a candidate host target of PsAvh181. GmSNAP-1 encodes a soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein, which associates with GmNSF of the SNARE complex functioning in vesicle trafficking. PsAvh181 binds to GmSNAP-1 in vivo and in vitro. PsAvh181 interferes with the interaction between GmSNAP-1 and GmNSF, and blocks the secretion of apoplastic defense-related proteins, such as pathogenesis-related protein PR-1 and apoplastic proteases. Taken together, these data show that an atypical P. sojae RxLR effector suppresses host apoplastic immunity by manipulating the host SNARE complex to interfere with host vesicle trafficking pathway.


Subject(s)
Glycine max/parasitology , Host-Pathogen Interactions , Phytophthora infestans/physiology , Plant Diseases/parasitology , Plant Proteins/metabolism , Virulence Factors/metabolism , Virulence , N-Ethylmaleimide-Sensitive Proteins/genetics , N-Ethylmaleimide-Sensitive Proteins/metabolism , Plant Diseases/immunology , Plant Proteins/genetics , Protein Interaction Domains and Motifs , SNARE Proteins/genetics , SNARE Proteins/metabolism , Glycine max/immunology , Glycine max/metabolism , Virulence Factors/genetics
11.
Plant Physiol ; 187(1): 321-335, 2021 09 04.
Article in English | MEDLINE | ID: mdl-34618132

ABSTRACT

Diseases caused by Phytophthora pathogens devastate many crops worldwide. During infection, Phytophthora pathogens secrete effectors, which are central molecules for understanding the complex plant-Phytophthora interactions. In this study, we profiled the effector repertoire secreted by Phytophthora sojae into the soybean (Glycine max) apoplast during infection using liquid chromatography-mass spectrometry. A secreted aldose 1-epimerase (AEP1) was shown to induce cell death in Nicotiana benthamiana, as did the other two AEP1s from different Phytophthora species. AEP1 could also trigger immune responses in N. benthamiana, other Solanaceae plants, and Arabidopsis (Arabidopsis thaliana). A glucose dehydrogenase assay revealed AEP1 encodes an active AEP1. The enzyme activity of AEP1 is dispensable for AEP1-triggered cell death and immune responses, while AEP-triggered immune signaling in N. benthamiana requires the central immune regulator BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1. In addition, AEP1 acts as a virulence factor that mediates P. sojae extracellular sugar uptake by mutarotation of extracellular aldose from the α-anomer to the ß-anomer. Taken together, these results revealed the function of a microbial apoplastic effector, highlighting the importance of extracellular sugar uptake for Phytophthora infection. To counteract, the key effector for sugar conversion can be recognized by the plant membrane receptor complex to activate plant immunity.


Subject(s)
Carbohydrate Epimerases/genetics , Fungal Proteins/genetics , Phytophthora/physiology , Sugars/metabolism , Biological Transport , Carbohydrate Epimerases/metabolism , Fungal Proteins/metabolism , Mutation , Phytophthora/enzymology , Phytophthora/genetics
12.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33658365

ABSTRACT

Oomycete pathogens such as Phytophthora secrete a repertoire of effectors into host cells to manipulate host immunity and benefit infection. In this study, we found that an RxLR effector, Avr1d, promoted Phytophthora sojae infection in soybean hairy roots. Using a yeast two-hybrid screen, we identified the soybean E3 ubiquitin ligase GmPUB13 as a host target for Avr1d. By coimmunoprecipitation (Co-IP), gel infiltration, and isothermal titration calorimetry (ITC) assays, we confirmed that Avr1d interacts with GmPUB13 both in vivo and in vitro. Furthermore, we found that Avr1d inhibits the E3 ligase activity of GmPUB13. The crystal structure Avr1d in complex with GmPUB13 was solved and revealed that Avr1d occupies the binding site for E2 ubiquitin conjugating enzyme on GmPUB13. In line with this, Avr1d competed with E2 ubiquitin conjugating enzymes for GmPUB13 binding in vitro, thereby decreasing the E3 ligase activity of GmPUB13. Meanwhile, we found that inactivation of the ubiquitin ligase activity of GmPUB13 stabilized GmPUB13 by blocking GmPUB13 degradation. Silencing of GmPUB13 in soybean hairy roots decreased P. sojae infection, suggesting that GmPUB13 acts as a susceptibility factor. Altogether, this study highlights a virulence mechanism of Phytophthora effectors, by which Avr1d competes with E2 for GmPUB13 binding to repress the GmPUB13 E3 ligase activity and thereby stabilizing the susceptibility factor GmPUB13 to facilitate Phytophthora infection. This study unravels the structural basis for modulation of host targets by Phytophthora effectors and will be instrumental for boosting plant resistance breeding.


Subject(s)
Multiprotein Complexes/chemistry , Phytophthora/chemistry , Ubiquitin-Protein Ligases/chemistry , Multiprotein Complexes/metabolism , Phytophthora/metabolism , Plant Diseases/microbiology , Protein Binding , Ubiquitin-Protein Ligases/metabolism
13.
J Integr Plant Biol ; 63(7): 1382-1396, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33586843

ABSTRACT

Plant pathogens rely on effector proteins to suppress host innate immune responses and facilitate colonization. Although the Phytophthora sojae RxLR effector Avh241 promotes Phytophthora infection, the molecular basis of Avh241 virulence remains poorly understood. Here we identified non-race specific disease resistance 1 (NDR1)-like proteins, the critical components in plant effector-triggered immunity (ETI) responses, as host targets of Avh241. Avh241 interacts with NDR1 in the plasma membrane and suppresses NDR1-participated ETI responses. Silencing of GmNDR1s increases the susceptibility of soybean to P. sojae infection, and overexpression of GmNDR1s reduces infection, which supports its positive role in plant immunity against P. sojae. Furthermore, we demonstrate that GmNDR1 interacts with itself, and Avh241 probably disrupts the self-association of GmNDR1. These data highlight an effective counter-defense mechanism by which a Phytophthora effector suppresses plant immune responses, likely by disturbing the function of NDR1 during infection.


Subject(s)
Arabidopsis Proteins/metabolism , Phytophthora/metabolism , Transcription Factors/metabolism , Arabidopsis Proteins/genetics , Cell Membrane/metabolism , Plant Diseases/parasitology , Plant Immunity/genetics , Plant Immunity/physiology , Glycine max/parasitology , Transcription Factors/genetics , Virulence/physiology
14.
Proc Natl Acad Sci U S A ; 117(44): 27685-27693, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33082226

ABSTRACT

Hosts and pathogens are engaged in a continuous evolutionary struggle for physiological dominance. A major site of this struggle is the apoplast. In Phytophthora sojae-soybean interactions, PsXEG1, a pathogen-secreted apoplastic endoglucanase, is a key focal point of this struggle, and the subject of two layers of host defense and pathogen counterdefense. Here, we show that N-glycosylation of PsXEG1 represents an additional layer of this coevolutionary struggle, protecting PsXEG1 against a host apoplastic aspartic protease, GmAP5, that specifically targets PsXEG1. This posttranslational modification also attenuated binding by the previously described host inhibitor, GmGIP1. N-glycosylation of PsXEG1 at N174 and N190 inhibited binding and degradation by GmAP5 and was essential for PsXEG1's full virulence contribution, except in GmAP5-silenced soybeans. Silencing of GmAP5 reduced soybean resistance against WT P. sojae but not against PsXEG1 deletion strains of P. sojae. The crucial role of N-glycosylation within the three layers of defense and counterdefense centered on PsXEG1 highlight the critical importance of this conserved apoplastic effector and its posttranslational modification in Phytophthora-host coevolutionary conflict.


Subject(s)
Aspartic Acid Endopeptidases/metabolism , Cellulase/metabolism , Glycine max/microbiology , Phytophthora/pathogenicity , Plant Diseases/microbiology , Plant Proteins/metabolism , Aspartic Acid Endopeptidases/genetics , Cellulase/genetics , Disease Resistance/genetics , Gene Knockdown Techniques , Glycosylation , Host-Pathogen Interactions/genetics , Phytophthora/metabolism , Plant Proteins/genetics , Plants, Genetically Modified , Protein Binding , Protein Processing, Post-Translational , Proteolysis , Glycine max/enzymology , Glycine max/genetics , Virulence
15.
Proc Natl Acad Sci U S A ; 116(16): 8054-8059, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30926664

ABSTRACT

Phytophthora are eukaryotic pathogens that cause enormous losses in agriculture and forestry. Each Phytophthora species encodes hundreds of effector proteins that collectively have essential roles in manipulating host cellular processes and facilitating disease development. Here we report the crystal structure of the effector Phytophthora suppressor of RNA silencing 2 (PSR2). PSR2 produced by the soybean pathogen Phytophthora sojae (PsPSR2) consists of seven tandem repeat units, including one W-Y motif and six L-W-Y motifs. Each L-W-Y motif forms a highly conserved fold consisting of five α-helices. Adjacent units are connected through stable, directional linkages between an internal loop at the C terminus of one unit and a hydrophobic pocket at the N terminus of the following unit. This unique concatenation results in an overall stick-like structure of PsPSR2. Genome-wide analyses reveal 293 effectors from five Phytophthora species that have the PsPSR2-like arrangement, that is, containing a W-Y motif as the "start" unit, various numbers of L-W-Y motifs as the "middle" units, and a degenerate L-W-Y as the "end" unit. Residues involved in the interunit interactions show significant conservation, suggesting that these effectors also use the conserved concatenation mechanism. Furthermore, functional analysis demonstrates differential contributions of individual units to the virulence activity of PsPSR2. These findings suggest that the L-W-Y fold is a basic structural and functional module that may serve as a "building block" to accelerate effector evolution in Phytophthora.


Subject(s)
Bacterial Proteins/chemistry , Phytophthora/pathogenicity , Amino Acid Motifs/genetics , Amino Acid Motifs/physiology , Bacterial Proteins/genetics , Models, Molecular , Phytophthora/chemistry , Phytophthora/genetics , Plant Diseases/microbiology , Tandem Repeat Sequences/genetics
16.
Mol Plant ; 12(4): 552-564, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30703565

ABSTRACT

Plants secrete defense molecules into the extracellular space (the apoplast) to combat attacking microbes. However, the mechanisms by which successful pathogens subvert plant apoplastic immunity remain poorly understood. In this study, we show that PsAvh240, a membrane-localized effector of the soybean pathogen Phytophthora sojae, promotes P. sojae infection in soybean hairy roots. We found that PsAvh240 interacts with the soybean-resistant aspartic protease GmAP1 in planta and suppresses the secretion of GmAP1 into the apoplast. By solving its crystal structure we revealed that PsAvh240 contain six α helices and two WY motifs. The first two α helices of PsAvh240 are responsible for its plasma membrane-localization and are required for PsAvh240's interaction with GmAP1. The second WY motifs of two PsAvh240 molecules form a handshake arrangement resulting in a handshake-like dimer. This dimerization is required for the effector's repression of GmAP1 secretion. Taken together, these data reveal that PsAvh240 localizes at the plasma membrane to interfere with GmAP1 secretion, which represents an effective mechanism by which effector proteins suppress plant apoplastic immunity.


Subject(s)
Aspartic Acid Proteases/metabolism , Glycine max/enzymology , Glycine max/microbiology , Host-Pathogen Interactions , Phytophthora/physiology , Virulence Factors/metabolism , Amino Acid Sequence , Cell Membrane/metabolism , Models, Molecular , Phytophthora/metabolism , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Immunity , Protein Multimerization , Protein Structure, Quaternary , Protein Transport , Glycine max/cytology , Glycine max/immunology , Virulence Factors/chemistry
17.
New Phytol ; 222(1): 425-437, 2019 04.
Article in English | MEDLINE | ID: mdl-30394556

ABSTRACT

Phytophthora pathogens secrete many effector proteins to manipulate host innate immunity. PsAvh238 is a Phytophthora sojae N-terminal Arg-X-Leu-Arg (RXLR) effector, which evolved to escape host recognition by mutating one nucleotide while retaining plant immunity-suppressing activity to enhance infection. However, the molecular basis of the PsAvh238 virulence function remains largely enigmatic. By using coimmunoprecipitation and liquid chromatography-tandem mass spectrometry analysis, we identified the 1-aminocyclopropane-1-carboxylate synthase (ACS) isoforms, the key enzymes in ethylene (ET) biosynthesis, as a host target of PsAvh238. We show that PsAvh238 interacts with soybean ACSs (GmACSs) in vivo and in vitro. By destabilizing Type2 GmACSs, PsAvh238 suppresses Type2 ACS-catalyzed ET biosynthesis and facilitates Phytophthora infection. Silencing of Type2 GmACSs, and inhibition of ET biosynthesis or signaling, increase soybean susceptibility to P. sojae infection, supporting a role for Type2 GmACSs and ET in plant immunity against P. sojae. Moreover, wild-type P. sojae but not the PsAvh238-disrupted mutants, inhibits ET induction and promotes P. sojae infection in soybean. Our results highlight the ET biosynthesis pathway as an essential part in plant immunity against P. sojae and a direct effector target.


Subject(s)
Ethylenes/metabolism , Glycine max/metabolism , Glycine max/microbiology , Lyases/metabolism , Phytophthora/physiology , Plant Diseases/microbiology , Proteins/metabolism , Disease Resistance , Enzyme Stability , Gene Silencing , Mutation/genetics , Plants, Genetically Modified , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Glycine max/immunology , Nicotiana/genetics , Nicotiana/microbiology
18.
Elife ; 72018 10 22.
Article in English | MEDLINE | ID: mdl-30346270

ABSTRACT

Oomycete pathogens secrete host cell-entering effector proteins to manipulate host immunity during infection. We previously showed that PsAvh52, an early-induced RxLR effector secreted from the soybean root rot pathogen, Phytophthora sojae, could suppress plant immunity. Here, we found that PsAvh52 is required for full virulence on soybean and binds to a novel soybean transacetylase, GmTAP1, in vivo and in vitro. PsAvh52 could cause GmTAP1 to relocate into the nucleus where GmTAP1 could acetylate histones H2A and H3 during early infection, thereby promoting susceptibility to P. sojae. In the absence of PsAvh52, GmTAP1 remained confined to the cytoplasm and did not modify plant susceptibility. These results demonstrate that GmTAP1 is a susceptibility factor that is hijacked by PsAvh52 in order to promote epigenetic modifications that enhance the susceptibility of soybean to P. sojae infection.


Subject(s)
Disease Susceptibility , Glycine max/immunology , Glycine max/microbiology , Host-Pathogen Interactions , Phytophthora/pathogenicity , Plant Diseases/microbiology , Virulence Factors/metabolism , Acetylation , Active Transport, Cell Nucleus , Histones/metabolism , Phytophthora/metabolism , Plant Diseases/immunology , Protein Processing, Post-Translational , Protein Transport
19.
Nat Commun ; 8(1): 2051, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29233978

ABSTRACT

The process of RNA splicing influences many physiological processes, including plant immunity. However, how plant parasites manipulate host RNA splicing process remains unknown. Here we demonstrate that PsAvr3c, an avirulence effector from oomycete plant pathogen Phytophthora sojae, physically binds to and stabilizes soybean serine/lysine/arginine-rich proteins GmSKRPs. The SKRPs are novel proteins that associate with a complex that contains plant spliceosome components, and are negative regulators of plant immunity. Analysis by RNA-seq data indicates that alternative splicing of pre-mRNAs from 401 soybean genes, including defense-related genes, is altered in GmSKRP1 and PsAvr3c overexpressing lines compared to control plants. Representative splicing events mediated by GmSKRP1 and PsAvr3c are tested by infection assays or by transient expression in soybean plants. Our results show that plant pathogen effectors can reprogram host pre-mRNA splicing to promote disease, and we propose that pathogens evolved such strategies to defeat host immune systems.


Subject(s)
Gene Expression Regulation, Plant/immunology , Glycine max/parasitology , Host-Pathogen Interactions/genetics , Phytophthora/pathogenicity , Plant Immunity/genetics , Alternative Splicing , Host-Pathogen Interactions/immunology , Phytophthora/physiology , Plant Diseases/genetics , Plant Diseases/immunology , RNA Precursors/genetics , RNA, Plant/genetics , Sequence Analysis, RNA , Soybean Proteins/genetics , Soybean Proteins/metabolism , Glycine max/genetics , Glycine max/immunology , Spliceosomes/genetics , Spliceosomes/metabolism , Virulence Factors/metabolism
20.
New Phytol ; 214(1): 361-375, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28134441

ABSTRACT

Phytophthora pathogens secrete effectors to manipulate host innate immunity, thus facilitating infection. Among the RXLR effectors highly induced during Phytophthora sojae infection, Avh238 not only contributes to pathogen virulence but also triggers plant cell death. However, the detailed molecular basis of Avh238 functions remains largely unknown. We mapped the regions responsible for Avh238 functions in pathogen virulence and plant cell death induction using a strategy that combines investigation of natural variation and large-scale mutagenesis assays. The correlation between cellular localization and Avh238 functions was also evaluated. We found that the 79th residue (histidine or leucine) of Avh238 determined its cell death-inducing activity, and that the 53 amino acids in its C-terminal region are responsible for promoting Phytophthora infection. Transient expression of Avh238 in Nicotiana benthamiana revealed that nuclear localization is essential for triggering cell death, while Avh238-mediated suppression of INF1-triggered cell death requires cytoplasmic localization. Our results demonstrate that a representative example of an essential Phytophthora RXLR effector can evolve to escape recognition by the host by mutating one nucleotide site, and can also retain plant immunosuppressive activity to enhance pathogen virulence in planta.


Subject(s)
Phytophthora/metabolism , Plant Immunity , Plants/immunology , Plants/microbiology , Proteins/metabolism , Amino Acid Sequence , Cell Death , Cell Nucleus/metabolism , Phytophthora/isolation & purification , Plant Diseases/immunology , Plant Diseases/microbiology , Polymorphism, Genetic , Protein Transport , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...