Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 245
Filter
1.
J Med Chem ; 67(10): 7788-7824, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38699796

ABSTRACT

Triazole demonstrates distinctive physicochemical properties, characterized by weak basicity, various dipole moments, and significant dual hydrogen bond acceptor and donor capabilities. These features are poised to play a pivotal role in drug-target interactions. The inherent polarity of triazole contributes to its lower logP, suggesting the potential improvement in water solubility. The metabolic stability of triazole adds additional value to drug discovery. Moreover, the metal-binding capacity of the nitrogen atom lone pair electrons of triazole has broad applications in the development of metal chelators and antifungal agents. This Perspective aims to underscore the unique physicochemical attributes of triazole and its application. A comparative analysis involving triazole isomers and other heterocycles provides guiding insights for the subsequent design of triazoles, with the hope of offering valuable considerations for designing other heterocycles in medicinal chemistry.


Subject(s)
Chemistry, Pharmaceutical , Triazoles , Triazoles/chemistry , Triazoles/chemical synthesis , Chemistry, Pharmaceutical/methods , Humans , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Solubility , Isomerism , Animals
2.
Immunotargets Ther ; 13: 247-258, 2024.
Article in English | MEDLINE | ID: mdl-38770263

ABSTRACT

Background: Lenvatinib or Sorafenib combined with programmed cell death protein-1 (PD-1) inhibitor as recommend treatment of advanced hepatocellular carcinoma (HCC) with extrahepatic metastasis (EHM). We aimed to compared the prognosis of Lenvatinib plus PD-1 inhibitor (Len+PD-1) versus Sorafenib plus PD-1 (Sora+PD-1) as an initial therapy for HCC with EHM. Methods: Incorporating a sum of 229 HCC patients with EHM were encompassed within this study, with 127 in the Sora+PD-1 group and 102 in the Len+PD-1 group. Through propensity score matching (PSM), we compared overall survival (OS), progression-free survival (PFS), and patient safety between these two groups. Results: The median OS were 13.0 months and 14.2 months in the Sora+PD-1 group and Len+PD-1 group. The 6-, 12-, and 24-month OS rates were 92.9%, 58.9% and 5.6% in Sora+PD-1 group and 93.1%, 61.8% and 22.6% in Len+PD-1 group, respectively. The Len+PD-1 group had obviously better OS than the Sora+PD-1 group (P = 0.002). The 3-, 6-, and 12-month PFS rates were 76.4%, 27.6% and 1.6% in Sora+PD-1 group and 86.2%, 50.5% and 12.2% in Len+PD-1 group, respectively. Compared with Sora+PD-1 group, the Len+PD-1 group had obviously better PFS (P < 0.001). Analysis within subgroups showed that OS was significant in patients receiving TACE in Len+PD-1 group than Sora+PD-1 group (p = 0.003). Conclusion: Len+PD-1 group had longer OS and PFS than Sora+PD-1 group for patient with EHM. In addition, OS in patients received TACE was improved with Len+PD-1 treatment. For patients without TACE, there was no significance between Sora+PD-1 and Len+PD-1 groups.

3.
Med Oncol ; 41(6): 159, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761335

ABSTRACT

RNA modification has garnered increasing attention in recent years due to its pivotal role in tumorigenesis and immune surveillance. N6-methyladenosine (m6A) modification is the most prevalent RNA modification, which can affect the expression of RNA by methylating adenylate at the sixth N position to regulate the occurrence and development of tumors. Dysregulation of m6A affects the activation of cancer-promoting pathways, destroys immune cell function, maintains immunosuppressive microenvironment, and promotes tumor cell growth. In this review, we delve into the latest insights into how abnormalities in m6A modification in both tumor and immune cells orchestrate immune evasion through the activation of signaling pathways. Furthermore, we explore how dysregulated m6A modification in tumor cells influences immune cells, thereby regulating tumor immune evasion via interactions within the tumor microenvironment (TME). Lastly, we highlight recent discoveries regarding specific inhibitors of m6A modulators and the encapsulation of m6A-targeting nanomaterials for cancer therapy, discussing their potential applications in immunotherapy.


Subject(s)
Adenosine , Immunotherapy , Neoplasms , Tumor Microenvironment , Humans , Immunotherapy/methods , Tumor Microenvironment/immunology , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/immunology , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/pathology , Tumor Escape/immunology , Animals , Immune Evasion/immunology , Signal Transduction/immunology
4.
Angew Chem Int Ed Engl ; : e202404941, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743027

ABSTRACT

Hydrazone-linked covalent organic frameworks (COFs) with structural flexibility, heteroatomic sites, post-modification ability and high hydrolytic stability have attracted great attention from scientific community. Hydrazone-linked COFs, as a subclass of Schiff-base COFs, was firstly reported in 2011 by Yaghi's group and later witnessed prosperous development in various aspects. Their adjustable structures, precise pore channels and plentiful heteroatomic sites of hydrazone-linked structures possess much potential in diverse applications, for example, adsorption/separation, chemical sensing, catalysis and energy storage, etc. Up to date, the systematic reviews about the reported hydrazone-linked COFs are still rare. Therefore, in this review, we will summarize their preparation methods, characteristics and related applications, and discuss the opportunity or challenge of hydrazone-linked COFs. We hope this review could provide new insights about hydrazone-linked COFs for exploring more appealing functions or applications.

5.
J Exp Clin Cancer Res ; 43(1): 122, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654320

ABSTRACT

BACKGROUND: Radiation therapy stands to be one of the primary approaches in the clinical treatment of malignant tumors. Nasopharyngeal Carcinoma, a malignancy predominantly treated with radiation therapy, provides an invaluable model for investigating the mechanisms underlying radiation therapy resistance in cancer. While some reports have suggested the involvement of circRNAs in modulating resistance to radiation therapy, the underpinning mechanisms remain unclear. METHODS: RT-qPCR and in situ hybridization were used to detect the expression level of circCDYL2 in nasopharyngeal carcinoma tissue samples. The effect of circCDYL2 on radiotherapy resistance in nasopharyngeal carcinoma was demonstrated by in vitro and in vivo functional experiments. The HR-GFP reporter assay determined that circCDYL2 affected homologous recombination repair. RNA pull down, RIP, western blotting, IF, and polysome profiling assays were used to verify that circCDYL2 promoted the translation of RAD51 by binding to EIF3D protein. RESULTS: We have identified circCDYL2 as highly expressed in nasopharyngeal carcinoma tissues, and it was closely associated with poor prognosis. In vitro and in vivo experiments demonstrate that circCDYL2 plays a pivotal role in promoting radiotherapy resistance in nasopharyngeal carcinoma. Our investigation unveils a specific mechanism by which circCDYL2, acting as a scaffold molecule, recruits eukaryotic translation initiation factor 3 subunit D protein (EIF3D) to the 5'-UTR of RAD51 mRNA, a crucial component of the DNA damage repair pathway to facilitate the initiation of RAD51 translation and enhance homologous recombination repair capability, and ultimately leads to radiotherapy resistance in nasopharyngeal carcinoma. CONCLUSIONS: These findings establish a novel role of the circCDYL2/EIF3D/RAD51 axis in nasopharyngeal carcinoma radiotherapy resistance. Our work not only sheds light on the underlying molecular mechanism but also highlights the potential of circCDYL2 as a therapeutic sensitization target and a promising prognostic molecular marker for nasopharyngeal carcinoma.


Subject(s)
Nasopharyngeal Carcinoma , Rad51 Recombinase , Radiation Tolerance , Recombinational DNA Repair , Humans , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Mice , Animals , Radiation Tolerance/genetics , RNA, Circular/genetics , Nasopharyngeal Neoplasms/radiotherapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Cell Line, Tumor , Female , Male , Prognosis , Mice, Nude
6.
Angew Chem Int Ed Engl ; 63(23): e202403918, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38519423

ABSTRACT

Precise design and tuning of Zn hopping/transfer sites with deeper understanding of the dendrite-formation mechanism is vital in artificial anode protective coating for aqueous Zn-ion batteries (AZIBs). Here, we probe into the role of anode-coating interfaces by designing a series of anhydride-based covalent organic frameworks (i.e., PI-DP-COF and PI-DT-COF) with specifically designed zigzag hopping sites and zincophilic anhydride groups that can serve as desired platforms to investigate the related Zn2+ hopping/transfer behaviours as well as the interfacial interaction. Combining theoretical calculations with experiments, the ABC stacking models of these COFs endow the structures with specific zigzag sites along the 1D channel that can accelerate Zn2+ transfer kinetics, lower surface-energy, homogenize ion-distribution or electric-filed. Attributed to these superiorities, thus-obtained optimal PI-DT-COF cells offer excellent cycling lifespan in both symmetric-cell (2000 cycles at 60 mA cm-2) and full-cell (1600 cycles at 2 A g-1), outperforming almost all the reported porous crystalline materials.

7.
Angew Chem Int Ed Engl ; 63(23): e202402458, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38545814

ABSTRACT

Visible-light sensitive and bi-functionally favored CO2 reduction (CRR)/evolution (CER) photocathode catalysts that can get rid of the utilization of ultraviolet light and improve sluggish kinetics is demanded to conquer the current technique-barrier of traditional Li-CO2 battery. Here, a kind of redox molecular junction sp2c metal-covalent organic framework (i.e. Cu3-BTDE-COF) has been prepared through the connection between Cu3 and BTDE and can serve as efficient photocathode catalyst in light-assisted Li-CO2 battery. Cu3-BTDE-COF with redox-ability, visible-light-adsorption region, electron-hole separation ability and endows the photocathode with excellent round-trip efficiency (95.2 %) and an ultralow voltage hysteresis (0.18 V), outperforming the Schiff base COFs (i.e. Cu3-BTDA-COF and Cu3-DT-COF) and majority of the reported photocathode catalysts. Combined theoretical calculations with characterizations, Cu3-BTDE-COF with the integration of Cu3 centers, thiazole and cyano groups possess strong CO2 adsorption/activation and Li+ interaction/diffusion ability to boost the CRR/CER kinetics and related battery property.

8.
Eur J Med Chem ; 268: 116289, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38452730

ABSTRACT

Most recently, worldwide interest in butyrylcholinesterase (BChE) as a potential target for treating Alzheimer's disease (AD) has increased. In this study, the previously obtained selective BChE inhibitors with benzimidazole-oxadiazole scaffold were further structurally modified to increase their aqueous solubility and pharmacokinetic (PK) characteristics. S16-1029 showed improved solubility (3280 µM, upgraded by 14 times) and PK parameters, including plasma exposure (AUC0-inf = 1729.95 ng/mL*h, upgraded by 2.6 times) and oral bioavailability (Fpo = 48.18%, upgraded by 2 times). S16-1029 also displayed weak or no inhibition against Cytochrome P450 (CYP450) and human ether a-go-go related gene (hERG) potassium channel. In vivo experiments on tissue distribution revealed that S16-1029 could cross the blood-brain barrier (BBB) and reach the central nervous system (CNS). In vivo cognitive improvement efficacy and good in vitro target inhibitory activity (eqBChE IC50 = 11.35 ± 4.84 nM, hBChE IC50 = 48.1 ± 11.4 nM) were also assured. The neuroprotective effects against several AD pathology characteristics allowed S16-1029 to successfully protect the CNS of progressed AD patients. According to the findings of this study, altering molecular planarity might be a viable strategy for improving the drug-like property of CNS-treating drugs.


Subject(s)
Alzheimer Disease , Butyrylcholinesterase , Humans , Butyrylcholinesterase/metabolism , Solubility , Cholinesterase Inhibitors/therapeutic use , Alzheimer Disease/drug therapy , Cognition , Acetylcholinesterase/metabolism , Molecular Docking Simulation , Structure-Activity Relationship , Molecular Structure
9.
J Chromatogr A ; 1719: 464734, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38368836

ABSTRACT

Abuse of glucocorticoid veterinary drugs in dairy industry can potentially threat milk safety and consequently influence human health. Here a reliable method for determination of 58 glucocorticoid drug residues in milk was established by combining solid phase extraction with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The analytes were extracted with acetonitrile and cleanup with EMR-Lipid lipid removal column. The analytes were chromatographically separated using Poroshell EC-C18 column and acquired by electrospray ionization with multiple-reaction monitoring (MRM) mode. The limit of quantification (S/N ≥ 10) ranged from 0.2 to 2.0 µg/kg and the limit of detection (S/N ≥ 3) ranged from 0.1 to 1.0 µg/kg. Average recoveries were from 71% to 113%, the relative standard deviations (RSDs) were less than 15%, and the correlation coefficients (R2) of calibration curves exceeded 0.99. The method was applied to detect twenty milk products obtained from local supermarkets including ten pasteurized milk and ten UHT milk. Two endogenous glucocorticoids, i.e. hydrocortisone and cortisone were detected but not exceed the maximum residue limits (MRLs).


Subject(s)
Milk , Tandem Mass Spectrometry , Humans , Animals , Chromatography, High Pressure Liquid/methods , Milk/chemistry , Tandem Mass Spectrometry/methods , Glucocorticoids/analysis , Solid Phase Extraction , Lipids/analysis
10.
Adv Sci (Weinh) ; 11(12): e2306515, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38229179

ABSTRACT

In South and Southeast Asia, the habit of chewing betel nuts is prevalent, which leads to oral submucous fibrosis (OSF). OSF is a well-established precancerous lesion, and a portion of OSF cases eventually progress to oral squamous cell carcinoma (OSCC). However, the specific molecular mechanisms underlying the malignant transformation of OSCC from OSF are poorly understood. In this study, the leading-edge techniques of Spatial Transcriptomics (ST) and Spatial Metabolomics (SM) are integrated to obtain spatial location information of cancer cells, fibroblasts, and immune cells, as well as the transcriptomic and metabolomic landscapes in OSF-derived OSCC tissues. This work reveals for the first time that some OSF-derived OSCC cells undergo partial epithelial-mesenchymal transition (pEMT) within the in situ carcinoma (ISC) region, eventually acquiring fibroblast-like phenotypes and participating in collagen deposition. Complex interactions among epithelial cells, fibroblasts, and immune cells in the tumor microenvironment are demonstrated. Most importantly, significant metabolic reprogramming in OSF-derived OSCC, including abnormal polyamine metabolism, potentially playing a pivotal role in promoting tumorigenesis and immune evasion is discovered. The ST and SM data in this study shed new light on deciphering the mechanisms of OSF-derived OSCC. The work also offers invaluable clues for the prevention and treatment of OSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Oral Submucous Fibrosis , Humans , Oral Submucous Fibrosis/genetics , Oral Submucous Fibrosis/metabolism , Oral Submucous Fibrosis/pathology , Carcinoma, Squamous Cell/genetics , Squamous Cell Carcinoma of Head and Neck , Transcriptome , Tumor Microenvironment , Cell Transformation, Neoplastic , Gene Expression Profiling
11.
Sci China Life Sci ; 67(5): 940-957, 2024 May.
Article in English | MEDLINE | ID: mdl-38212458

ABSTRACT

Adhesion molecules mediate cell-to-cell and cell-to-extracellular matrix interactions and transmit mechanical and chemical signals among them. Various mechanisms deregulate adhesion molecules in cancer, enabling tumor cells to proliferate without restraint, invade through tissue boundaries, escape from immune surveillance, and survive in the tumor microenvironment. Recent studies have revealed that adhesion molecules also drive angiogenesis, reshape metabolism, and are involved in stem cell self-renewal. In this review, we summarize the functions and mechanisms of adhesion molecules in cancer and the tumor microenvironment, as well as the therapeutic strategies targeting adhesion molecules. These studies have implications for furthering our understanding of adhesion molecules in cancer and providing a paradigm for exploring novel therapeutic approaches.


Subject(s)
Cell Adhesion Molecules , Neoplasms , Tumor Microenvironment , Humans , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/therapy , Cell Adhesion Molecules/metabolism , Molecular Targeted Therapy/methods , Animals , Neovascularization, Pathologic/metabolism , Signal Transduction , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
12.
Molecules ; 29(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38257223

ABSTRACT

Sodium manganese hexacyanoferrate (NaMnHCF) has emerged as a research hotspot among Prussian blue analogs for sodium-ion battery cathode materials due to its advantages of high voltage, high specific capacity, and abundant raw materials. However, its practical application is limited by its poor electronic conductivity. In this study, we aim to solve this problem through the in situ growth of NaMnHCF on carbon nanotubes (CNTs) using a simple coprecipitation method. The results show that the overall electronic conductivity of NaMnHCF is significantly improved after the introduction of CNTs. The NaMnHCF@10%CNT sample presents a specific capacity of 90 mA h g-1, even at a current density of 20 C (2400 mA g-1). The study shows that the optimized composite exhibits a superior electrochemical performance at different mass loadings (from low to high), which is attributed to the enhanced electron transport and shortened electron pathway. Surprisingly, the cycling performance of the composites was also improved, resulting from decreased polarization and the subsequent reduction in the side reactions at the cathode/electrolyte interface. Furthermore, we revealed the evolution of potential plateau roots from the extraction of crystal water during the charge-discharge process of NaMnHCF based on the experimental results. This study is instructive not only for the practical application of NaMnHCF materials but also for advancing our scientific understanding of the behavior of crystal water during the charge-discharge process.

13.
Environ Pollut ; 342: 123127, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38072023

ABSTRACT

Micro- and nanoplastics (MNPs) have been found to occur intensively in aquatic environments, along with other conventional pollutants (Po) such as heavy metals, pesticides, pharmaceuticals, etc. However, our understanding of how MNPs and Po interact on aquatic primary producers is fragmented. We performed a quantitative meta-analysis based on 933 published experimental assessments from 44 studies to examine the coupled effects of MNPs and Po on microalgae. Although the results based on interaction type frequency (the proportion of each interaction type in all results) revealed dominantly additive interactions (56%) for overall physiological performance, an overall antagonistic effect was observed based on the mean interaction effect sizes. A higher proportion of antagonistic interaction type frequency was found in marine species compared to fresh species. The antagonistic effects were particularly significant for growth, oxidative responses, and photosynthesis, which could be attributed to the adsorption effect of MNPs on Po and thus the decreasing concentrations of pollutants in the medium. Larger-sized, negatively charged or uncharged and aged MNPs had higher proportions of antagonistic effects compared to smaller-sized, positively charged and virgin MNPs, due to their stronger adsorption capacity to Po. This study provides a comprehensive insight into the interactive effects of MNPs and Po on microalgae.


Subject(s)
Microalgae , Microplastics , Photosynthesis , Water Pollutants, Chemical/toxicity
14.
J Am Chem Soc ; 145(42): 23167-23175, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37820308

ABSTRACT

The precise tuning of components, spatial orientations, or connection modes for redox units is vital for gaining deep insight into efficient artificial photosynthetic overall reaction, yet it is still hard achieve for heterojunction photocatalysts. Here, we have developed a series of redox molecular junction covalent organic frameworks (COFs) (M-TTCOF-Zn, M = Bi, Tri, and Tetra) for artificial photosynthetic overall reaction. The covalent connection between TAPP-Zn and multidentate TTF endows various connection modes between water photo-oxidation (multidentate TTF) and CO2 photoreduction (TAPP-Zn) centers that can serve as desired platforms to study the possible interactions between redox centers. Notably, Bi-TTCOF-Zn exhibits a high CO production rate of 11.56 µmol g-1 h-1 (selectivity, ∼100%), which is more than 2 and 6 times higher than those of Tri-TTCOF-Zn and Tetra-TTCOF-Zn, respectively. As revealed by theoretical calculations, Bi-TTCOF-Zn facilitates a more uniform distribution of energy-level orbitals, faster charge transfer, and stronger *OH adsorption/stabilization ability than those of Tri-TTCOF-Zn and Tetra-TTCOF-Zn.

15.
Food Res Int ; 172: 113113, 2023 10.
Article in English | MEDLINE | ID: mdl-37689842

ABSTRACT

Photooxidation is one of the main causes of the deterioration of milk quality during processing and marketing. This study aimed to investigate the variation in peptides after photooxidation using peptidomic techniques, and how cow species, oxygen content, and light intensity affect photooxidation. The different peptides were identified and quantified using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Eighteen milk samples were subjected to light treatment. Seven types of peptides were identified as photooxidation markers. Subsequently, the effects of milk variety, oxygen content, and light intensity on photooxidation were studied, and sensory evaluations were performed. Dairy cow breed, oxygen content, and light intensity all affect photooxidation. Sensory evaluation verified that light and oxygen are necessary for the photooxidation of milk. The peptide m/z+ 529.2783 (LLDEIKEVV), both in different varieties of milk and in different brands of commercially available milk, showed a large variation in multiplicity, and its content was closely related to oxygen and light. This peptide was not produced in the absence of oxygen and light, and its relative content increased with the duration of light exposure. These results suggest that the peptidomics method is an effective tool for distinguishing between normal and photooxidized milk.


Subject(s)
Light , Milk , Animals , Cattle , Female , Chromatography, Liquid , Marketing , Oxygen
16.
Nutrients ; 15(18)2023 Sep 17.
Article in English | MEDLINE | ID: mdl-37764811

ABSTRACT

Vitamin A is a fat-soluble micronutrient that is essential for human health. In this study, the daily vitamin A intake of Chinese residents was evaluated by investigating the vitamin A content of various foods. The results show that the dietary intake of vitamin A in common foods was 460.56 ugRAE/day, which is significantly lower than the recommended dietary reference intake of vitamin A (800 ugRAE/day for adult men and 700 ugRAE/day for adult women). Vegetables contributed the most to daily vitamin A dietary intake, accounting for 54.94% of vitamin A intake (253.03 ugRAE/day), followed by eggs, milk, aquatic products, meat, fruit, legumes, coarse cereals, and potatoes. Therefore, an increase in the vitamin A content of vegetables and the fortification of vegetable oils with vitamin A are effective ways to increase vitamin A intake to meet the recommended dietary guidelines in China. The assessment results support the design of fortified foods.


Subject(s)
Diet , East Asian People , Vitamin A , Adult , Female , Humans , Male , Nutritional Status , Vegetables , Food
17.
Adv Sci (Weinh) ; 10(30): e2302558, 2023 10.
Article in English | MEDLINE | ID: mdl-37632718

ABSTRACT

Single cell RNA sequencing (scRNA-seq) provides a great convenience for studying tumor occurrence and development for its ability to study gene expression at the individual cell level. However, patient-derived tumor tissues are composed of multiple types of cells including tumor cells and adjacent non-malignant cells such as stromal cells and immune cells. The spatial locations of various cells in situ tissues plays a pivotal role in the occurrence and development of tumors, which cannot be elucidated by scRNA-seq alone. Spatially resolved transcriptomics (SRT) technology emerges timely to explore the unrecognized relationship between the spatial background of a particular cell and its functions, and is increasingly used in cancer research. This review provides a systematic overview of the SRT technologies that are developed, in particular the more widely used cutting-edge SRT technologies based on next-generation sequencing (NGS). In addition, the main achievements by SRT technologies in precisely unveiling the underappreciated spatial locations on gene expression and cell function with unprecedented high-resolution in cancer research are emphasized, with the aim of developing more effective clinical therapeutics oriented to a deeper understanding of the interaction between tumor cells and surrounding non-malignant cells.


Subject(s)
Neoplasms , Transcriptome , Humans , Transcriptome/genetics , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Technology , Neoplasms/genetics
18.
Small ; 19(50): e2304887, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37632313

ABSTRACT

Sodium manganese hexacyanoferrate (NaMnHCF) is an attractive candidate as a cathode material for sodium-ion batteries due to its low cost and high energy density. However, its practical application is hindered by poor electrochemical stability caused by the Jahn-Teller effect of Mn and the unstable structure of NaMnHCF. Here, this paper aims to address this issue by introducing highly stable AMnHCF (where A = K, Rb, or Cs) through a facile method to composite with NaMnHCF. The findings reveal that all AMnHCFs have a "pillar effect" on the crystal structure of NaMnHCF. It is observed that the degree of pillar effect varies depending on the specific AMnHCF used. The less electrochemically inactive the alkaline ion is and the greater the degree of compositing with NaMnHCF, the more dramatic the pillar effect. KMnHCF shows limited pillar effect due to its rough composition with NaMnHCF and the loss of K+ upon (de)intercalation. RbMnHCF has lower electrochemical activity and can be better composited with NaMnHCF. On the other hand, CsMnHCF exhibits the strongest pillar effect due to the inactivation of Cs+ and the excellent coherent structure formed by CsMnHCF and NaMnHCF. This research provides a new perspective on stabilizing NaMnHCF with other alkaline elements.

19.
Sensors (Basel) ; 23(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37430899

ABSTRACT

This paper presents a novel improvement in the optical path structure of a three-wavelength symmetric demodulation method applied to extrinsic Fabry-Perot interferometer (EFPI) fiber optic acoustic sensors. The traditional approach of using couplers to construct the phase difference in the symmetric demodulation method is replaced with a new approach that combines the symmetric demodulation algorithm with wavelength division multiplexing (WDM) technology. This improvement addresses the issue of a suboptimal coupler split ratio and phase difference, which can affect the accuracy and performance of the symmetric demodulation method. In an anechoic chamber test environment, the symmetric demodulation algorithm implemented with the WDM optical path structure achieved a signal-to-noise ratio (SNR) of 75.5 dB (1 kHz), a sensitivity of 1104.9 mV/Pa (1 kHz), and a linear fitting coefficient of 0.9946. In contrast, the symmetric demodulation algorithm implemented with the traditional coupler-based optical path structure achieved an SNR of 65.1 dB (1 kHz), a sensitivity of 891.75 mV/Pa (1 kHz), and a linear fitting coefficient of 0.9905. The test results clearly indicate that the improved optical path structure based on WDM technology outperforms the traditional coupler-based optical path structure in terms of sensitivity, SNR, and linearity.

20.
Plant Dis ; 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37368447

ABSTRACT

Lonicera japonica is a perennial shrub that has been used since ancient times as a medicine to clear heat and detoxify poisons. Its branches (the vine of L. japonica) and unopened flower buds (honeysuckle) can be used as medicine to treat external wind heat or febrile disease fever (Shang, Pan, Li, Miao, & Ding, 2011). In July 2022, a serious disease was observed in L. japonica individuals planted in an area of experimental base of Nanjing Agricultural University (N 32°02', E 118°86'), Nanjing, Jiangsu Province, China. More than 200 Lonicera plants were surveyed, and the incidence of leaf rot in Lonicera leaves was over 80%. The initial symptoms were of chlorotic spots and gradual development of visible white mycelia and powdery substances (fungal spores) were observed on the leaves. Both the front and back of the leaves gradually appeared as brown diseased spots. Thus, a combination of multiple disease spots causes leaf wilting and the leaves eventually fall off. Leaves with typical symptoms were collected and cut into approximately 5 mm square fragments. The tissues were sterilized in 1% NaOCl for 90 s and 75% ethanol for 15 s and then washed with sterile water three times. The treated leaves were cultured on Potato Dextrose Agar (PDA) medium at 25℃. When mycelia grew around the leaf pieces, fungal plugs were collected along the outer edge of the colony and transferred to fresh PDA plates using a cork borer. Eight fungal strains with the same morphology were obtained after three rounds of subculturing. The colony was initially white with a fast growth rate, and occupied a 9-cm-diameter culture dish within 24 h. The colony turned gray-black in the later stages. After 2 days, small black sporangia spots appeared on top of the hyphae. The sporangia were yellow when immature, and black at maturity. The spores were oval with an average size of 29.6 (22.4-36.9) × 35.3 (25.8-45.2) µm (n = 50) in diameter. To identify the pathogen, fungal hyphae were scraped, and the fungal genome was extracted using a kit (BioTeke, Cat#DP2031). The internal transcribed spacer region (ITS) of the fungal genome was amplified with primers ITS1/ITS4, and the results of ITS sequencing were uploaded to the GenBank database with accession number OP984201. The phylogenetic tree was constructed using the neighbor-joining method with MEGA11 software. Phylogenetic analysis based on ITS showed that the fungus was grouped together with Rhizopus arrhizus (MT590591) and had high bootstrap support. Thus, the pathogen was identified as R. arrhizus. To verify Koch's postulates, 60 ml of a spore suspension (1×104 conidia/ml) was sprayed onto the surface of 12 healthy Lonicera plants, and the other 12 plants were sprayed with sterile water as a control. All plants were kept in the greenhouse at 25°C with 60% relative humidity. After 14 d, the infected plants showed symptoms similar to those of the original diseased plants. The strain was isolated again from the diseased leaves of artificially inoculated plants and verified as the original strain by sequencing. The results showed that R. arrhizus was the pathogen responsible for Lonicera leaf rot. Previous studies have shown that R. arrhizus causes garlic bulb rot (Zhang et al., 2022) and Jerusalem artichoke tuber rot (Yang et al., 2020). To our knowledge, this is the first report of R. arrhizus causing Lonicera leaf rot disease in China. Information regarding the identification of this fungus may be helpful for controlling the leaf rot disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...