Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Adv Healthc Mater ; : e2400884, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701326

ABSTRACT

Bacterial infection, inflammation, and excessive oxidative stress are the primary factors that contribute to delayed healing of skin wounds. In this study, a multifunctional wound dressing (SF/Ag@rGO hydrogel) is developed to promote the healing of infected skin wounds by combining the inherent antibacterial activity of Ag nanoparticles (NPs) with near-infrared (NIR)-assisted antibacterial therapy. Initially, L-ascorbic acid is used as a reducing agent and PVP-K17 as a stabilizer and dispersant, this facilitates the synthesis of reduced graphene oxide loaded with Ag NPs (Ag@rGO). Ag@rGO is then blended with a silk fibroin (SF) solution to form an instantly gelling SF/Ag@rGO hydrogel that exhibits rapid self-healing, injectability, shape adaptability, NIR responsiveness, antioxidant, high tissue adhesion, and robust mechanical properties. In vitro and in vivo experiments show that the SF/Ag@rGO hydrogel demonstrates strong antioxidant and photothermal antibacterial capabilities, promoting wound healing through angiogenesis, stimulating collagen generation, alleviating inflammation, antioxidant, and promoting cell proliferation, indicating that the SF/Ag@rGO hydrogel dressing is an ideal candidate for clinical treatment of full-thickness bacterial-stained wounds.

2.
ACS Pharmacol Transl Sci ; 7(5): 1426-1437, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38751623

ABSTRACT

Protein tyrosine phosphatase 1B (PTP1B) and TC-PTP can function in a coordinated manner to regulate diverse biological processes including insulin and leptin signaling, T-cell activation, and tumor antigen presentation, which makes them potential targets for several therapeutic applications. We have previously demonstrated that the lipidated BimBH3 peptide analogues were a new class of promising PTP1B inhibitors with once-weekly antidiabetic potency. Herein, we chemically synthesized two series of BimBH3 analogues via site-specific modification and studied their structure-activity relationship. The screened analogues S2, S6, A2-14, A2-17, A2-20, and A2-21 exhibited an improved PTP1B/TC-PTP dual inhibitory activity and achieved good stability in the plasma of mice and dogs, which indicated long-acting potential. In mouse models of type 2 diabetes mellitus (T2DM), the selected analogues S6, S7, A2-20, and A2-21 with an excellent target activity and plasma stability generated once-weekly therapeutic potency for T2DM at lower dosage (0.5 µmol/kg). In addition, evidence was provided to confirm the cell permeability and targeted enrichment of the BimBH3 analogues. In summary, we report here that site-specific modification and long fatty acid conjugation afforded cell-permeable peptidomimetic analogues of BimBH3 with enhanced stability, in vivo activity, and long-acting pharmacokinetic profile. Our findings could guide the further optimization of BimBH3 analogues and provide a proof-of-concept for PTP1B/TC-PTP targeting as a new therapeutic approach for T2DM, which may facilitate the discovery and development of alternative once-weekly anti-T2DM drug candidates.

3.
Chem Res Toxicol ; 37(4): 561-570, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38534178

ABSTRACT

Loss-of-function mutations in the Breast Cancer Susceptibility Gene (BRCA1 and BRCA2) are often detected in patients with breast cancer. Poly(ADP-ribose) polymerase-1 (PARP1) plays a key role in the repair of DNA strand breaks, and PARP inhibitors have been shown to induce highly selective killing of BRCA1/2-deficient tumor cells, a mechanism termed synthetic lethality. In our previous study, a novel PARP1 inhibitor─(E)-2-(2,3-dibromo-4,5-dimethoxybenzylidene)-N-(4-fluorophenyl) hydrazine-1-carbothioamide (4F-DDC)─was synthesized, which significantly inhibited PARP1 activity with an IC50 value of 82 ± 9 nM. The current study aimed to explore the mechanism(s) underlying the antitumor activity of 4F-DDC under in vivo and in vitro conditions. 4F-DDC was found to selectively inhibit the proliferation of BRCA mutant cells, with highly potent effects on HCC-1937 (BRCA1-/-) cells. Furthermore, 4F-DDC was found to induce apoptosis and G2/M cell cycle arrest in HCC-1937 cells. Interestingly, immunofluorescence and Western blot results showed that 4F-DDC induced DNA double strand breaks and further activated the cGAS-STING pathway in HCC-1937 cells. In vivo analysis results revealed that 4F-DDC inhibited the growth of HCC-1937-derived tumor xenografts, possibly via the induction of DNA damage and activation of the cGAS-STING pathway. In summary, the current study provides a new perspective on the antitumor mechanism of PARP inhibitors and showcases the therapeutic potential of 4F-DDC in the treatment of breast cancer.


Subject(s)
Breast Neoplasms , Humans , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , BRCA2 Protein/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , DNA Damage , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Poly(ADP-ribose) Polymerases/pharmacology
4.
Macromol Biosci ; 24(2): e2300277, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37658682

ABSTRACT

Ulcerative colitis is a chronic inflammatory bowel disease with a high recurrence rate. Natural phytochemical compounds are increasingly being considered as preventative and supportive treatments for this condition. However, the poor water solubility and stability of many of these compounds limit their effectiveness in vivo. To address this issue, fisetin (FT), a natural phytochemical with poor solubility, is stabilized using silk sericin (SS) to create a composite (SS/FT). The therapeutic potential of the SS/FT on ulcerative colitis is extensively investigated, and the results showed that it effectively alleviated the body weight loss and colon length shortening induced by dextran sulfate sodium. Notably, SS/FT downregulated the immune response, decreased colonic histopathological lesions, and reduced the cGAS/STING signal activation. This suggests that SS/FT may offer a promising therapy for treating ulcerative colitis.


Subject(s)
Colitis, Ulcerative , Flavonols , Sericins , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Sericins/adverse effects , Signal Transduction , NF-kappa B/metabolism , Phytochemicals/adverse effects , Dextran Sulfate , Disease Models, Animal , Colon/pathology , Mice, Inbred C57BL
5.
Food Chem Toxicol ; 184: 114427, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160781

ABSTRACT

Oxaliplatin (OXL) is a first-line drug for the treatment of colon cancer, with excellent efficacy. Intestinal toxicity is a common side effect of OXL, with unclear pathogenesis and a lack of effective treatment strategies. Polydatin (PD) has anti-inflammatory and antioxidant activities and is a potential drug for treating intestinal diseases, but its poor water solubility limits its application. In this study, polyvinylpyrrolidone (PVP) was used as a carrier to prepare nanoparticles loaded with PD (PVP-PD), with a particle size of 92.42 nm and exhibiting sustained release properties. In vitro results showed that PVP-PD protected NCM460 cells from OXL induced injury, mitochondrial membrane potential (MMP) disruption, and accumulation of reactive oxygen species (ROS). The in vivo results demonstrated the protective effect of PVP-PD on intestinal toxicity induced by OXL, such as alleviating weight loss and colon length reduction induced by OXL. Both in vivo and in vitro mechanisms indicated that OXL induced DNA damage and activated the cGAS-STING pathway, further inducing the expression of inflammatory factors such as IL-1ß and TNF-α. PVP-PD alleviated the aforementioned changes induced by OXL by inhibiting the DNA damage-cGAS-STING pathway. In summary, our study demonstrated that the DNA damage-cGAS-STING pathway was involved in OXL induced intestinal toxicity, and PVP-PD provided a potential strategy for treating OXL induced intestinal toxicity.


Subject(s)
Glucosides , Nanoparticles , Povidone , Stilbenes , Oxaliplatin/toxicity , Nucleotidyltransferases
6.
Bioorg Med Chem ; 95: 117503, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37862935

ABSTRACT

The extracellular signal-regulated kinase 5 (Erk5) signaling plays a crucial role in cancer, and regulating its activity may have potential in cancer chemotherapy. In this study, a series of novel 7-azaindole derivatives (4a-5o) were designed and synthesized. Their antitumor activities on human lung cancer A549 cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 4',6-diamidino-2-phenylindole (DAPI) staining and colony formation assay. Among them, compounds 4a, 4 h, 5d and 5j exhibited good anti-proliferative activity with the IC50 values of 6.23 µg/mL, 8.52 µg/mL, 7.33 µg/mL and 4.56 µg/mL, respectively, equivalent to Erk5 positive control XMD8-92 (IC50 = 5.36 µg/mL). The results of structure-activity relationships (SAR) showed that double bond on the piperidine ring and N atoms at the N7 position of 7-azaindole was essential for their antiproliferative activity. Furthermore, compounds 4a and 5j exhibited good inhibition on Erk5 kinase through Western blot analysis and possible action site of compounds with Erk5 kinase was elucidated by molecular docking.


Subject(s)
Antineoplastic Agents , Mitogen-Activated Protein Kinase 7 , Humans , Mitogen-Activated Protein Kinase 7/metabolism , Molecular Docking Simulation , Cell Proliferation , Structure-Activity Relationship , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Cell Line, Tumor , Molecular Structure
7.
J Med Chem ; 66(18): 12678-12696, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37725577

ABSTRACT

Eukaryotic translation initiation factors (eIFs) are highly expressed in cancer cells, especially eIF4E, the central regulatory node driving cancer cell growth and a potential target for anticancer drugs. eIF4E-targeting strategies primarily focus on inhibiting eIF4E synthesis, interfering with eIF4E/eIF4G interactions, and targeting eIF4E phosphorylation and peptide inhibitors. Although some small-molecule inhibitors are in clinical trials, no eIF4E inhibitors are available for clinical use. We provide an overview of the regulatory mechanisms of eIF4E and summarize the progress in developing and discovering eIF4E inhibitor strategies. We propose that interference with eIF4E/eIF4G interactions will provide a new perspective for the design of eIF4E inhibitors and may be a preferred strategy.

8.
Int J Biol Macromol ; 245: 125541, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37355076

ABSTRACT

Fucoidan (FU) is a natural polymer from marine organisms, which has been widely studied and applied in drug delivery. In this study, FU nanoparticles loaded with proanthocyanidins (PCs) (FU/PCs NPs) were prepared and their effect and mechanism in protecting cisplatin-induced acute kidney injury (AKI) were studied. The in vitro studies confirmed that FU/PCs NPs increased the antioxidant activity of free PCs and protected the death of human kidney proximal tubule (HK-2) cells induced by cisplatin. Further mechanism studies showed that FU/PCs NPs protected the mitochondrial damage induced by cisplatin, activated mitophagy, inhibited the release of mitochondrial DNA (mtDNA), and inhibited the cGAS/STING signal pathway. The in vivo results also indicated that FU/PCs NPs protected cisplatin-induced AKI, including inhibiting the increase of blood urea nitrogen (BUN) and serum creatinine (SCr) levels induced by cisplatin. The mechanism studies confirmed that cisplatin induced an increase in the expression of mitophagy-related protein Pink/Pakrin, mitochondrial mtDNA release and cGAS/STING expression in mice kidney tissues. Pre-administration of FU/PCs NPs further activated mitophagy, as well as inhibiting mtDNA release and cGAS/STING expression. In conclusion, our research proved the role of mitophagy-mtDNA-cGAS/STING signal was involved in cisplatin-induced AKI.


Subject(s)
Acute Kidney Injury , Proanthocyanidins , Mice , Animals , Humans , Cisplatin/adverse effects , DNA, Mitochondrial , Proanthocyanidins/pharmacology , Mitophagy , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Signal Transduction , Nucleotidyltransferases/metabolism
9.
Food Chem Toxicol ; 177: 113844, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37244599

ABSTRACT

Silk fibroin (SF) has excellent biocompatibility and biodegradability as a biomaterial. The purity and molecular weight distribution of silk fibroin peptide (SFP) make it more suitable for medical application. In this study, SFP nanofibers (molecular weight ∼30kD) were prepared through CaCl2/H2O/C2H5OH solution decomposition and dialysis, and adsorbed naringenin (NGN) to obtain SFP/NGN NFs. In vitro results showed that SFP/NGN NFs increased the antioxidant activity of NGN and protected HK-2 cells from cisplatin-induced damage. In vivo results also showed that SFP/NGN NFs protected mice from cisplatin-induced acute kidney injury (AKI). The mechanism results showed that cisplatin induced mitochondrial damage, as well as increased mitophagy and mtDNA release, which activated the cGAS-STING pathway and induced the expression of inflammatory factors such as IL-6 and TNF-α. Interestingly, SFP/NGN NFs further activated mitophagy and inhibited mtDNA release and cGAS-STING pathway. Demonstrated that mitophagy-mtDNA-cGAS-STING signal axis was involved in the kidney protection mechanism of SFP/NGN NFs. In conclusion, our study confirmed that SFP/NGN NFs are candidates for protection of cisplatin-induced AKI, which is worthy of further study.


Subject(s)
Acute Kidney Injury , Fibroins , Nanofibers , Animals , Mice , DNA, Mitochondrial/metabolism , Cisplatin/toxicity , Nucleotidyltransferases/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Peptides/pharmacology , Peptides/chemistry
10.
Mol Pharm ; 20(2): 1189-1201, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36647568

ABSTRACT

Excessive acetaminophen (APAP) induces excess reactive oxygen species (ROS), leading to liver damage. Pterostilbene (PTE) has excellent antioxidant and anti-inflammatory activities, but poor solubility limits its biological activity. In this study, we prepared PTE-loaded Soluplus/poloxamer 188 mixed micelles (PTE-MMs), and the protective mechanism against APAP-induced liver injury was investigated. In vitro results showed that PTE-MMs protected H2O2-induced HepG2 cell proliferation inhibition, ROS accumulation, and mitochondrial membrane potential destruction. Immunofluorescence results indicated that PTE-MMs significantly inhibited H2O2-induced DNA damage and cGAS-STING pathway activation. For in vivo protection studies, PTE-MMs (25 and 50 mg/kg) were administered orally for 5 days, followed by APAP (300 mg/kg). The results showed that APAP significantly induced injury in liver histopathology as well as an increase in serum aspartate aminotransferase and alanine aminotransferase levels. Moreover, the above characteristics of APAP-induced acute liver injury were inhibited by PTE-MMs. In addition, APAP-induced changes in the activities of antioxidant enzymes such as SOD and GSH in liver tissue were also inhibited by PTE-MMs. Immunohistochemical results showed that PTE-MMs inhibited APAP-induced DNA damage and cGAS-STING pathway activation in liver tissues. For in vivo therapeutic effect study, mice were first given APAP (300 mg/kg), followed by oral administration of PTE-MMs (50 mg/kg) for 3 days. The results showed that PTE-MMs exhibited promising therapeutic effects on APAP-induced acute liver injury. In conclusion, our study shows that the Soluplus/poloxamer 188 MM system has the potential to enhance the biological activity of PTE in the protection and therapeutic of liver injury.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Animals , Mice , Acetaminophen/toxicity , Antioxidants/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Hydrogen Peroxide/metabolism , Liver/metabolism , Micelles , Oxidative Stress , Poloxamer , Reactive Oxygen Species/metabolism
11.
Mol Pharm ; 20(1): 136-146, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36326450

ABSTRACT

Acute kidney injury (AKI) is the most common side effect of the anti-cancer drug cisplatin, and currently, no effective preventive measures are available in clinical practice. Oxidative stress and DNA damage mechanisms may be involved in cisplatin-induced AKI. In this study, we prepared Kolliphor HS15-based myricetin-loaded (HS15-Myr) nanomicelles and explored the mechanism of protection against cisplatin-induced AKI. In vitro results showed that the HS15-Myr nanomicelles enhanced the antioxidant activity of myricetin (Myr) and inhibited cisplatin-induced proliferation inhibition of HK-2 cells. Moreover, the HS15-Myr nanomicelles inhibited cisplatin-induced reactive oxygen species accumulation, mitochondrial membrane potential reduction, and DNA damage, which might be related to the inhibition of the cyclic GMP-AMP synthase (cGAS)─stimulating interferon gene (STING) signaling pathway. In vivo results in mice showed that the significant reductions in body weight and renal indices and the increased blood urea nitrogen and serum creatinine levels induced by cisplatin could be significantly reversed by pretreating with the HS15-Myr nanomicelles. Furthermore, nanomicelle pretreatment significantly altered the activities of antioxidant enzymes (e.g., GSH, MDA, and SOD) induced by cisplatin. In addition, cisplatin-induced inflammatory responses in mouse kidney tissue were found to be inhibited by pretreatment with HS15-Myr nanomicelles, such as IL-1ß and TNF-α expression. The nanomicelles also significantly inhibited cisplatin-induced activation of the DNA damage-cGAS-STING pathway in kidney tissues. Together, our findings suggest that Myr-loaded nanomicelles are potential nephroprotective drugs.


Subject(s)
Acute Kidney Injury , Cisplatin , Animals , Mice , Cisplatin/pharmacology , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Signal Transduction , Antioxidants/therapeutic use , DNA Damage , Nucleotidyltransferases/pharmacology , Nucleotidyltransferases/therapeutic use , Kidney
12.
Nutrients ; 14(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36432501

ABSTRACT

Phycobiliproteins, fucoxanthin, and krill oil are natural marine products with excellent activities. In the study, we prepared the complex of phycobiliproteins, fucoxanthin, and krill oil (PFK) and assessed the anti-obesity, lipid-lowering, and antioxidant activities in high-fat diet rats. The results showed that the rats significantly and safely reduced body weight gain and regulated serum biochemical parameters at 50 mg/kg phycobiliproteins, 10 mg/kg fucoxanthin, and 100 mg/kg krill oil. Furthermore, the molecular mechanism study suggested that the complex of PFK confined the enzyme activities of lipid synthesis and enhanced antioxidant activity to improve obesity indirectly. The conclusions demonstrated that the complex of PFK has potent anti-obesity and hypolipidemic effects which have potential use as a natural and healthy food and medicine for anti-obesity and lowering blood lipids in the future.


Subject(s)
Euphausiacea , Lipid Metabolism , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Euphausiacea/chemistry , Phycobiliproteins , Obesity/metabolism , Oils , Lipids
13.
Int J Biol Macromol ; 223(Pt A): 1083-1093, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36372101

ABSTRACT

Fucoidan (FU) is a natural sulfated polysaccharide with certain biological activity and has been shown to be an excellent nano-delivery material. In this study, ferulic acid (FA)-loaded FU nanoparticles (FA/FU NPs) were prepared and their nephroprotective mechanism was investigated. With a particle size of 158.6 ± 4.5 nm, FA/FU NPs increased the antioxidant activity of FA in vitro, possibly related to the increased dispersity of FA. In vitro results demonstrated that FA/FU NPs significantly protected human renal proximal tubule (HK-2) cells from cisplatin-induced damage, possibly by suppressing cisplatin-induced DNA damage and activating the cGAS-STING pathway. Furthermore, in vivo experiments confirmed that FA/FU NPs protected mice from cisplatin-induced acute kidney injury (AKI). Mechanistic studies confirmed that FA/FU NPs exerted nephroprotective effects by reducing MDA activity and increasing GSH and SOD activity. Our results demonstrated the potential of FU for delivering poorly soluble drug FA and protecting against cisplatin-induced AKI.


Subject(s)
Acute Kidney Injury , Nanoparticles , Mice , Humans , Animals , Cisplatin/adverse effects , Coumaric Acids/pharmacology , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Polysaccharides/adverse effects
14.
ACS Appl Mater Interfaces ; 14(40): 45167-45177, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36181475

ABSTRACT

Burn injuries are one of the most devastating traumas. The development of polymer-based hydrogel dressings to prevent bacterial infection and accelerate burn wound healing is continuously desired. Mechanical strong hydrogels that encapsulated antibacterial drugs have gained increasing attention. Herein, aramid nanofibers (ANFs)-reinforced rhein fibrous hydrogels (ANFs/Rhein) were fabricated through a one-pot procedure to serve as a possible treatment for the Staphylococcus aureus-infected burn wound. ANFs preserved the highly aligned backbones and the mechanical properties of Kevlar, and its combination with an antibacterial drug rhein produced a composite hydrogel that possesses favorable physicochemical properties including appropriate mechanical strength, high water holding capacity, satisfactory antibacterial efficiency, and excellent biocompatibility. As wound dressings, ANFs/Rhein hydrogels provided a moist environment for the wound site and released antibacterial drugs continuously to improve the wound healing rate by efficiently restraining bacterial infection, reducing inflammation, enhancing collagen deposition, and promoting the formation of blood vessels, in this way to offer a potential treatment strategy for bacteria-associated burn wound healing.


Subject(s)
Burns , Nanofibers , Staphylococcal Infections , Wound Infection , Anthraquinones , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Bandages , Burns/drug therapy , Collagen , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Water
15.
Int J Pharm ; 626: 122161, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36058409

ABSTRACT

Silk fibroin (SF) is a natural polymeric biomaterial widely used in the preparation of drug delivery systems. Herein, silk fibroin peptide (SFP) was self-assembled into nanofibers, encapsulated a poorly water-soluble drug baicalein (SFP/BA NFs), and then used to protect against cisplatin-induced acute kidney injury (AKI). Specifically, the SFP/BA NFs significantly enhanced the aqueous dispersity, storage stability, and in vitro antioxidant activity of BA. SFP/BA NFs increased the drug uptake and localization to mitochondria. In vitro results demonstrated that SFP/BA NFs can relieve the cisplatin-induced HK-2 cell damage, and inhibit the cisplatin-induced accumulation of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) disruption. Mechanism studies demonstrated that SFP/BA NFs may exert nephroprotective effects by inhibiting both the cisplatin-induced DNA damage and the cGAS/STING pathway activation. In vivo results showed that cisplatin treatment resulted in decreased body weight, increased serum creatinine (SCr), and increased blood urea nitrogen (BUN) levels, while SFP/BA NFs reversed the above symptoms. Furthermore, SFP/BA NFs reversed the cisplatin-induced abnormal changes of antioxidant enzymes (e.g., SOD and GSH), and inhibited the cisplatin-induced DNA damage as well as the activation of cGAS/TING. Above all, our results revealed the potential of SFP/BA NFs to protect against cisplatin-induced AKI.


Subject(s)
Acute Kidney Injury , Fibroins , Nanofibers , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Antioxidants/pharmacology , Antioxidants/therapeutic use , Apoptosis , Biocompatible Materials/therapeutic use , Cisplatin/pharmacology , Creatinine , Fibroins/chemistry , Flavanones , Humans , Kidney/metabolism , Nanofibers/chemistry , Nucleotidyltransferases/pharmacology , Nucleotidyltransferases/therapeutic use , Peptides/chemistry , Reactive Oxygen Species/metabolism , Superoxide Dismutase , Tolnaftate/adverse effects , Water/pharmacology
16.
Mol Med Rep ; 26(5)2022 11.
Article in English | MEDLINE | ID: mdl-36069236

ABSTRACT

Liver regeneration is a complex process that needs orchestration of multiple nonparenchymal cells including sinusoid endothelial cells. Vascular endothelial growth factor (VEGF) serves a crucial role in angiogenesis and liver regeneration. However, the lack of an high­efficiency delivery system target to the injured site reduces the local therapeutic efficacy of VEGF. In our previous study, collagen binding VEGF (CBD­VEGF) was established by fusing collagen binding domain (CBD) into the N­terminal of native VEGF and improved cardiac function after myocardial infraction. The present study investigated the therapeutic effect of CBD­VEGF on liver regeneration by a mouse model of partial hepatectomy. After injection through portal vein following 2/3 hepatectomy, CBD­VEGF was largely retained in the hepatic extracellular matrix for 48 h. Furthermore, CBD­VEGF application significantly promoted sinusoidal regeneration and remodeling in remanent liver tissue 48 h after hepatectomy. In addition, CBD­VEGF treatment significantly enhanced the proliferation of hepatocytes at 2 and 3 days post­surgery compared with native VEGF, concomitant with attenuated liver injury. In conclusion, these results demonstrated that CBD­VEGF could be a promising therapeutic strategy for liver regeneration.


Subject(s)
Hepatectomy , Liver Regeneration , Animals , Collagen/metabolism , Endothelial Cells/metabolism , Hepatocytes/metabolism , Hyperplasia/pathology , Liver/metabolism , Mice , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factors/metabolism
17.
FASEB J ; 36(10): e22553, 2022 10.
Article in English | MEDLINE | ID: mdl-36111980

ABSTRACT

Mesenchymal stromal cells (MSCs) are attractive candidates for treating hepatic disorders given their potential to enhance liver regeneration and function. The paracrine paradigm may be involved in the mechanism of MSC-based therapy, and exosomes (Exo) play an important role in this paracrine activity. Hypoxia significantly improves the effectiveness of MSC transplantation. However, whether hypoxia preconditioned MSCs (Hp-MSCs) can enhance liver regeneration, and whether this enhancement is mediated by Exo, are unknown. In this study, mouse bone marrow-derived MSCs (BM-MSCs) and secreted Exo were injected through the tail vein. We report that Hp-MSCs promote liver regeneration after partial hepatectomy in mice through their secreted exosomes. Interestingly, MSC-Exo were concentrated in liver 6 h after administration and mainly taken up by macrophages, but not hepatocytes. Compared with normoxic MSC-Exo (N-Exo), hypoxic MSC-Exo (Hp-Exo) enhanced M2 macrophage polarization both in vivo and in vitro. Microarray analysis revealed significant enrichment of microRNA (miR)-182-5p in Hp-Exo compared with that in N-Exo. In addition, miR-182-5p knockdown partially abolished the beneficial effect of Hp-Exo. Finally, Hp-MSC-derived exosomal miR-182-5p inhibited theprotein expression of forkhead box transcription factor 1 (FOXO1) in macrophages, which inhibited toll-like receptor 4 (TLR4) expression and subsequently induced an anti-inflammatory response. These results highlight the therapeutic potential of Hp-Exo in liver regeneration and suggest that miR-182-5p from Hp-Exo facilitates macrophage polarization during liver regeneration by modulating the FOXO1/TLR4 signaling pathway.


Subject(s)
Liver Regeneration , Macrophages , Mesenchymal Stem Cells , MicroRNAs , Animals , Bone Marrow/metabolism , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Hypoxia/metabolism , Liver Regeneration/genetics , Macrophages/metabolism , Mesenchymal Stem Cells/metabolism , Mice , MicroRNAs/metabolism , Toll-Like Receptor 4/metabolism
18.
Int J Biol Macromol ; 220: 1021-1030, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36007701

ABSTRACT

Silk sericin (SS) has become a noticeable drug nanocarrier due to its excellent biocompatibility and bioactivity. To further extend the application of SS, a facile one-step process was constructed to fabricate SS-stabilized-drug composites. Various insoluble drugs can be encapsulated into SS with high loading amount, and showed good dispersity in aqueous solution. For example, proanthocyanidins (PAC), a natural polyphenol with initial antioxidant and anti-inflammatory effects, can be loaded on SS to form SS/PAC composites. The SS/PAC can disperse uniformly in aqueous solution with an average particle diameter of ~136 nm, and showed high drug loading amount of 1767 mg/g. The SS/PAC exhibited high antioxidant efficiency and excellent biocompatibility (non-irritant, non-hemolysis, and non-cytotoxicity), could remarkably alleviate the symptoms of dextran sulfate sodium-induced ulcerative colitis by decreasing the disease activity index scores, inhibiting the shortening of colon length, regulating oxidative stress, suppressing inflammation, and reversing the histopathological injuries. This work provides a simple method to fabricate SS-stabilized-drug composites, promises high potential in therapeutic and pharmaceutical applications.


Subject(s)
Colitis, Ulcerative , Proanthocyanidins , Sericins , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Colitis, Ulcerative/drug therapy , Dextran Sulfate , Humans , Polyphenols , Sericins/pharmacology , Silk
19.
J Biomater Appl ; 37(5): 918-929, 2022 11.
Article in English | MEDLINE | ID: mdl-35969638

ABSTRACT

Cholestatic liver injury, characterized by liver fibrosis, has increasingly become a global health problem, with no effective treatment available. Hepatic stellate cells (HSCs) differentiate into myofibroblasts, leading to excessive deposition of the extracellular matrix (ECM), which is a feature of liver fibrosis. Basic fibroblast growth factor (bFGF) has proven antifibrotic effects in chronic liver disease; however, the lack of an effective delivery system to the injury site reduces its therapeutic efficacy. The aim of this study was to assess the therapeutic effect of collagen-binding bFGF (CBD-bFGF) for the treatment of liver fibrosis in a murine bile duct ligation (BDL) model. We found that CBD-bFGF treatment significantly alleviated liver injury in the early phase of BDL injury, and was associated with decreased necroptotic cell death and inflammatory response. Moreover, CBD-bFGF had enhanced therapeutic effects for liver fibrosis on day 7 after surgery compared to those obtained with native bFGF treatment. In vitro, CBD-bFGF treatment notably inhibited TGF-ß1-induced LX-2 cell activation, migration, and contraction compared with native bFGF. In conclusion, CBD-bFGF may be a promising treatment for hepatic fibrosis.


Subject(s)
Fibroblast Growth Factors , Liver Cirrhosis , Mice , Animals , Fibroblast Growth Factors/pharmacology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Bile Ducts/surgery , Bile Ducts/metabolism , Liver/pathology , Collagen/metabolism , Ligation
20.
Invest Ophthalmol Vis Sci ; 63(8): 15, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35838447

ABSTRACT

Purpose: To explore the effect and mechanism of NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasomes on corneal fibrosis. Methods: The wild-type, NLRP3 knockout (KO), and myeloid cell-specific NLRP3 KO (NLRP3 Lyz-KO) C57 mice were used to establish a corneal scarring model. NLRP3 inhibitor, IL-1ß neutralizing antibody, and an IL-1R antagonist were used to investigate the role of NLRP3 and IL-1ß in corneal fibrosis. The expression of the NLRP3 signaling pathway related proteins, alpha-smooth muscle actin, TGF-ß was determined by quantitative real-time polymerase chain reaction, Western blotting, and immunofluorescence staining. Flow cytometry was used to detect the infiltration of macrophages during corneal fibrosis. Results: The components of the NLRP3 inflammasomes were elevated and activated during corneal scarring. Additionally, genetic or chemical-mediated blocking of NLRP3 as well as IL-1ß significantly alleviated corneal fibrosis. Moreover, neutrophil (CD45+Ly6G+) and macrophage (CD45+ F4/80+) accumulation increased in the cornea during the progression of corneal fibrosis. Intriguingly, the increased concentrations of NLRP3 and IL-1ß were prominently colocalized with the infiltrating F4/80+ macrophages. Expectedly, NLRP3 Lyz-KO mice exhibited a marked decrease in their corneal fibrosis symptoms. Mechanistically, the activation of IL-1ß or macrophage NLRP3 stimulated the expression of TGF-ß1 in the corneal epithelial cells, whereas an NLRP3 deficiency decreased its expression in the corneal epithelium. Conclusions: These observations revealed that the NLRP3 inflammasome activation in infiltrating macrophages contributes to corneal fibrosis by regulating corneal epithelial TGF-ß1 expression. Targeting the NLRP3 inflammasome might be a promising strategy for the treatment of corneal scarring.


Subject(s)
Epithelium, Corneal , Inflammasomes , Animals , Cicatrix/metabolism , Epithelium, Corneal/metabolism , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Macrophages/metabolism , Mice , Mice, Inbred NOD , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...