Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 371
Filter
2.
Chem Sci ; 15(18): 6891-6896, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38725498

ABSTRACT

Birefringent materials are of great significance to the development of modern optical technology; however, research on halide birefringent crystals with a wide transparent range remains limited. In this work, mercuric bromide (HgBr2) has been investigated for the first time as a promising birefringent material with a wide transparent window spanning from ultraviolet (UV) to far-infrared (far-IR) spectral regions (0.34-22.9 µm). HgBr2 has an exceptionally large birefringence (Δn, 0.235 @ 546 nm), which is 19.6 times that of commercial MgF2. The ordered linear motif [Br-Hg-Br] with high polarizability anisotropy within the molecule is the inherent source of excellent birefringence, making it an efficient building block for birefringent materials. In addition, HgBr2 can be easily grown under mild conditions and remain stable in air for prolonged periods. Studying the birefringent properties of HgBr2 crystals would provide new ideas for future exploration of wide-spectrum birefringent materials.

3.
Acta Pharm Sin B ; 14(5): 2006-2025, 2024 May.
Article in English | MEDLINE | ID: mdl-38799624

ABSTRACT

Diabetes, characterized by hyperglycemia, is a major cause of death and disability worldwide. Peptides, such as insulin and glucagon-like peptide-1 (GLP-1) analogs, have shown promise as treatments for diabetes due to their ability to mimic or enhance insulin's actions in the body. Compared to subcutaneous injection, oral administration of anti-diabetic peptides is a preferred approach. However, biological barriers significantly reduce the efficacy of oral peptide therapeutics. Recent advancements in drug delivery systems and formulation techniques have greatly improved the oral delivery of peptide therapeutics and their efficacy in treating diabetes. This review will highlight (1) the benefits of oral anti-diabetic peptide therapeutics; (2) the biological barriers for oral peptide delivery, including pH and enzyme degradation, intestinal mucosa barrier, and biodistribution barrier; (3) the delivery platforms to overcome these biological barriers. Additionally, the review will discuss the prospects in this field. The information provided in this review will serve as a valuable guide for future developments in oral anti-diabetic peptide therapeutics.

4.
RSC Adv ; 14(18): 12883-12887, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38650692

ABSTRACT

A novel method was developed for synthesizing γ-alkyl ketones via nickel-catalyzed cross-electrophile coupling of cyclopropyl ketones and non-activated primary alkyl chlorides. High reactivity and selectivity can be achieved with sodium iodide as a crucial cocatalyst that generates a low concentration of alkyl iodide via halide exchange, thus avoiding the formation of alkyl dimers. This reaction possessed excellent regioselectivity and high step economy circumventing in situ or pregenerated organometallics.

5.
PLoS One ; 19(4): e0302292, 2024.
Article in English | MEDLINE | ID: mdl-38626181

ABSTRACT

Proteins containing domain of unknown function (DUF) are prevalent in eukaryotic genome. The DUF1216 proteins possess a conserved DUF1216 domain resembling to the mediator protein of Arabidopsis RNA polymerase II transcriptional subunit-like protein. The DUF1216 family are specifically existed in Brassicaceae, however, no comprehensive evolutionary analysis of DUF1216 genes have been performed. We performed a first comprehensive genome-wide analysis of DUF1216 proteins in Brassicaceae. Totally 284 DUF1216 genes were identified in 27 Brassicaceae species and classified into four subfamilies on the basis of phylogenetic analysis. The analysis of gene structure and conserved motifs revealed that DUF1216 genes within the same subfamily exhibited similar intron/exon patterns and motif composition. The majority members of DUF1216 genes contain a signal peptide in the N-terminal, and the ninth position of the signal peptide in most DUF1216 is cysteine. Synteny analysis revealed that segmental duplication is a major mechanism for expanding of DUF1216 genes in Brassica oleracea, Brassica juncea, Brassica napus, Lepidium meyneii, and Brassica carinata, while in Arabidopsis thaliana and Capsella rubella, tandem duplication plays a major role in the expansion of the DUF1216 gene family. The analysis of Ka/Ks (non-synonymous substitution rate/synonymous substitution rate) ratios for DUF1216 paralogous indicated that most of gene pairs underwent purifying selection. DUF1216 genes displayed a specifically high expression in reproductive tissues in most Brassicaceae species, while its expression in Brassica juncea was specifically high in root. Our studies offered new insights into the phylogenetic relationships, gene structures and expressional patterns of DUF1216 members in Brassicaceae, which provides a foundation for future functional analysis.


Subject(s)
Arabidopsis , Brassicaceae , Brassicaceae/genetics , Gene Duplication , Phylogeny , Evolution, Molecular , Genome, Plant , Arabidopsis/genetics , Plant Proteins/genetics , Plant Proteins/chemistry , Mustard Plant/genetics , Protein Sorting Signals/genetics , Gene Expression Regulation, Plant
6.
Small ; : e2401675, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644329

ABSTRACT

Anodes with high capacity and long lifespan play an important role in the advanced batteries. However, none of the existing anodes can meet these two requirements simultaneously. Lithium (Li)-graphite composite anode presents great potential in balancing these two requirements. Herein, the working mechanism of Li-graphite composite anode is comprehensively investigated. The capacity decay features of the composite anode are different from those of Li ion intercalation in Li ion batteries and Li metal deposition in Li metal batteries. An intercalation and conversion hybrid storage mechanism are proposed by analyzing the capacity decay ratios in the composite anode with different initial specific capacities. The capacity decay models can be divided into four stages including Capacity Retention Stage, Relatively Independent Operation Stage, Intercalation & Conversion Coupling Stage, Pure Li Intercalation Stage. When the specific capacity is between 340 and 450 mAh g-1, its capacity decay ratio is between that of pure intercalation and conversion model. These results intensify the comprehensive understandings on the working principles in Li-graphite composite anode and present novel insights in the design of high-capacity and long-lifespan anode materials for the next-generation batteries.

7.
Nat Commun ; 15(1): 3195, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609380

ABSTRACT

The solvent-free selective hydrogenation of nitroaromatics to azoxy compounds is highly important, yet challenging. Herein, we report an efficient strategy to construct individually dispersed Co atoms decorated on niobium pentaoxide nanomeshes with unique geometric and electronic properties. The use of this supported Co single atom catalysts in the selective hydrogenation of nitrobenzene to azoxybenzene results in high catalytic activity and selectivity, with 99% selectivity and 99% conversion within 0.5 h. Remarkably, it delivers an exceptionally high turnover frequency of 40377 h-1, which is amongst similar state-of-the-art catalysts. In addition, it demonstrates remarkable recyclability, reaction scalability, and wide substrate scope. Density functional theory calculations reveal that the catalytic activity and selectivity are significantly promoted by the unique electronic properties and strong electronic metal-support interaction in Co1/Nb2O5. The absence of precious metals, toxic solvents, and reagents makes this catalyst more appealing for synthesizing azoxy compounds from nitroaromatics. Our findings suggest the great potential of this strategy to access single atom catalysts with boosted activity and selectivity, thus offering blueprints for the design of nanomaterials for organocatalysis.

8.
Front Plant Sci ; 15: 1362287, 2024.
Article in English | MEDLINE | ID: mdl-38455733

ABSTRACT

Rose black spot disease caused by Marssonina rosae is among the most destructive diseases that affects the outdoor cultivation and production of roses; however, the molecular mechanisms underlying the defensive response of roses to M. rosae have not been clarified. To investigate the diversity of response to M. rosae in resistant and susceptible rose varieties, we performed transcriptome and metabolome analyses of resistant (KT) and susceptible (FG) rose varieties and identified differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) in response to M. rosae at different time points. In response to M. rosae, DEGs and DAMs were mainly upregulated compared to the control and transcription factors were concentrated in the WRKY and AP2/ERF families. Gene Ontology analysis showed that the DEGs of FG were mainly enriched in biological processes, such as the abscisic acid-activated signaling pathway, cell wall, and defense response, whereas the DEGs of KT were mainly enriched in Golgi-mediated vesicle transport processes. Kyoto Encyclopedia of Genes and Genomes analysis showed that the DEGs of both varieties were concentrated in plant-pathogen interactions, plant hormone signal transduction, and mitogen-activated protein kinase signaling pathways, with the greatest number of DEGs associated with brassinosteroid (BR) in the plant hormone signal transduction pathway. The reliability of the transcriptome results was verified by qRT-PCR. DAMs of KT were significantly enriched in the butanoate metabolism pathway, whereas DAMs of FG were significantly enriched in BR biosynthesis, glucosinolate biosynthesis, and tryptophan metabolism. Moreover, the DAMs in these pathways were significantly positively correlated with the DEGs. Disease symptoms were aggravated when FG leaves were inoculated with M. rosae after 24-epibrassinolide treatment, indicating that the response of FG to M. rosae involves the BR signaling pathway. Our results provide new insights into the molecular mechanisms underlying rose response to M. rosae and lay a theoretical foundation for formulating rose black spot prevention and control strategies and cultivating resistant varieties.

9.
Int J Surg ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498404

ABSTRACT

PURPOSE: Previous studies have explored the role of immune cells on osteonecrosis. This Mendelian randomization (MR) study further assessed 731 immunocyte phenotypes on osteonecrosis whether a causal relationship exists and provides some evidence of causality. METHODS: The 731 immunocyte phenotypes and osteonecrosis data used in this study were obtained from their respective genome-wide association studies (GWAS). We used inverse variable weighting (IVW) as the primary analysis method. In addition, we simultaneously employed multiple analytical methods, including MR-Egger, weighted mode, simple mode, and weighted median, to strengthen the final results. Finally, sensitivity analyses were conducted to verify the stability and feasibility of the data. RESULTS: The results of the IVW method of MR analysis showed that 8 immunocyte phenotypes were positively associated with osteonecrosis (P<0.05, OR > 1); 18 immunocyte phenotypes were negatively associated with osteonecrosis (P<0.05, OR<1), none of which were heterogeneous or horizontally pleiotropic (P > 0.05) or reverse causality. In addition to this, in reverse MR, osteonecrosis was positively associated with 10 additional immunocyte phenotypes (P<0.05, OR > 1) and negatively associated with 14 immunocyte phenotypes (P<0.05, OR<1). And none of them had heterogeneity and horizontal pleiotropy (P > 0.05) or reverse causality. CONCLUSIONS: We demonstrated a complex causal relationship between multiple immune phenotypes and osteonecrosis through a comprehensive two-way two-sample MR analysis, highlighting the complex pattern of interactions between the immune system and osteonecrosis.

10.
Chem Commun (Camb) ; 60(28): 3854-3857, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38497353

ABSTRACT

In contrast to the well-established enzymatic enantioselective decarboxylative protonation (EDP), the corresponding chemocatalytic reactions of acyclic malonic acid derivatives remain challenging. Herein, we developed a biomimetic EDP of α-alkyl-α-aryl malonate monoesters using a chiral 1,2-trans-diaminocyclohexane-based N-sulfonamide as an organocatalyst. The method demonstrates excellent chemical yields, good enantioselectivity, mild reaction conditions, and the generation of only CO2 as waste.

11.
Fitoterapia ; 175: 105915, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508499

ABSTRACT

Four undescribed ginkgolides, including two rare sesquiterpene ginkgolides (compounds 1 and 2) and two diterpenoid ginkgolides (compounds 3 and 4), were isolated from Ginkgo biloba L. The structures of these four ginkgolides were identified based on extensive spectroscopic analysis, DP4+ probability analysis and X-ray diffraction. Compounds 1 and 2 exhibited excellent antiplatelet aggregation activities with IC50 values of 1.20 ± 0.25 and 4.11 ± 0.34 µM, respectively.


Subject(s)
Ginkgo biloba , Ginkgolides , Phytochemicals , Platelet Aggregation Inhibitors , Ginkgo biloba/chemistry , Molecular Structure , Ginkgolides/pharmacology , Ginkgolides/isolation & purification , Ginkgolides/chemistry , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/isolation & purification , Platelet Aggregation Inhibitors/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Animals , Platelet Aggregation/drug effects
12.
Phytomedicine ; 128: 155397, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547623

ABSTRACT

BACKGROUND: Acute lung injury (ALI) often leads to serious respiratory diseases with high incidence rates and mortality. For centuries, Xiebai San (XBS) has been a classical traditional Chinese medicine (TCM) about respiratory illness such as pneumonia in children. However, the related mechanism of XBS against ALI remains indistinct. PURPOSE: To reveal specific targets of XBS in lipopolysaccharide (LPS)-induced ALI mice using integrated pharmacology. STUDY DESIGN: The integrated method was to expound mechanism and targets of XBS inhibited ALI. METHODS: The primary components in XBS were identified by ultra high performance liquid chromatography-quadrupole time of flight-mass spectrometry (UHPLC-QTOF-MS). The potential drug targets were established using network pharmacology. The anti-ALI effect of XBS was evaluated in mice. Additionally, therapeutic targets were screened by integrating metabolome and transcriptome and verified in lung tissue. RESULTS: In total, 163 chemical components were identified in XBS, and a network of "3 drugs-18 components-86 targets" for XBS against ALI was constructed. In ALI mice, XBS alleviated lung inflammation by decreasing permeation and expression of neutrophils, tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß) in bronchoalveolar lavage fluid (BALF), serum, and lung tissue. Next, the transcriptome of lung tissue was analyzed and enriched, indicating the importance of mitogen-activated protein kinase (MAPK), Janus kinase-signal transducer and activator of transcription (JAK-STAT), and others, which was consistent with network pharmacology prediction. Also, western blotting and immunohistochemistry results showed that XBS was against ALI mainly by inhibiting extracellular signal regulated kinase (ERK) and signal transducer and activator of transcription 3 (Stat3) phosphorylation. In addition, the metabolome of lung tissue revealed that XBS mainly regulated pathways involved in arachidonic acid, glycerophospholipid, and tryptophan metabolisms. The expression levels of leukotriene, phosphatidylcholine, kynurenine, and others were also verified. CONCLUSION: XBS alleviated inflammation of ALI by inhibiting the phosphorylation of the ERK/Stat3 pathway and regulating arachidonic acid, glycerophospholipid, and tryptophan metabolisms. This study will guide clinical precision medicine and promote modernization of XBS.


Subject(s)
Acute Lung Injury , Drugs, Chinese Herbal , STAT3 Transcription Factor , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Animals , STAT3 Transcription Factor/metabolism , Drugs, Chinese Herbal/pharmacology , Mice , Male , Phosphorylation/drug effects , Lipopolysaccharides , MAP Kinase Signaling System/drug effects , Lung/drug effects , Lung/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Network Pharmacology , Signal Transduction/drug effects
13.
Nanoscale ; 16(15): 7634-7644, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38526018

ABSTRACT

Lithium-sulfur (Li-S) batteries are considered promising next-generation energy storage systems due to their high energy density (2600 W h kg-1) and cost-effectiveness. However, the shuttle effect of lithium polysulfides in sulfur cathodes and uncontrollable Li dendrite growth in Li metal anodes significantly impede the practical application of Li-S batteries. In this study, we address these challenges by employing a high-entropy Prussian blue analogue Mn0.4Co0.4Ni0.4Cu0.4Zn0.4[Fe(CN)6]2 (HE-PBA) composite containing multiple metal ions as a dual-functional mediator for Li-S batteries. Specifically, the HE-PBA composite provides abundant metal active sites that efficiently chemisorb lithium polysulfides (LiPSs) to facilitate fast redox conversion kinetics of LiPSs. In Li metal anodes, the exceptional lithiophilicity of the HE-PBA ensures a homogeneous Li ion flux, resulting in uniform Li deposition while mitigating the growth of Li dendrites. As a result, our work demonstrates outstanding long-term cycling performance with a decay rate of only 0.05% per cycle over 1000 cycles at 2.0 C. The HE-PBA@Cu/Li anode maintains a stable overpotential even after 600 h at 0.5 mA cm-2 under the total areal capacity of 1.0 mA h cm-2. This study showcases the application potential of the HE-PBA in Li-S batteries and encourages further exploration of prospective high-entropy materials used to engineer next-generation batteries.

14.
J Org Chem ; 89(7): 5029-5037, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38531374

ABSTRACT

Inubritantrimer A (1), a trace trimerized sesquiterpenoid [4 + 2] adduct featuring an unusual exo-exo type spiro-polycyclic scaffold, together with three new endo-exo [4 + 2] adducts, inubritantrimers B-D (2-4), were discovered from the flowers of Inula britannica. Their structures were elucidated using 1D/2D NMR, X-ray diffraction, and ECD approaches. 1 is characterized as a novel exo-exo trimer, synthesized biogenetically from three sesquiterpenoid monomers, featuring a unique linkage of C-11/C-1', C-13/C-3' and C-13'/C-3″, C-11'/C-1″ through a two-step exo [4 + 2] cycloaddition process. Compounds 1-4 exhibited modest cytotoxicity against breast cancer cells with IC50 values in the range of 5.84-12.01 µM.


Subject(s)
Inula , Sesquiterpenes , Inula/chemistry , Molecular Structure , Magnetic Resonance Spectroscopy , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry
15.
PLoS One ; 19(2): e0296108, 2024.
Article in English | MEDLINE | ID: mdl-38394325

ABSTRACT

Feature selection has long been a focal point of research in various fields.Recent studies have focused on the application of random multi-subspaces methods to extract more information from raw samples.However,this approach inadequately addresses the adverse effects that may arise due to feature collinearity in high-dimensional datasets.To further address the limited ability of traditional algorithms to extract useful information from raw samples while considering the challenge of feature collinearity during the random subspaces learning process, we employ a clustering approach based on correlation measures to group features.Subsequently, we construct subspaces with lower inter-feature correlations.When integrating feature weights obtained from all feature spaces,we introduce a weighting factor to better handle the contributions from different feature spaces.We comprehensively evaluate our proposed algorithm on ten real datasets and four synthetic datasets,comparing it with six other feature selection algorithms.Experimental results demonstrate that our algorithm,denoted as KNCFS,effectively identifies relevant features,exhibiting robust feature selection performance,particularly suited for addressing feature selection challenges in practice.


Subject(s)
Algorithms , Learning , Cluster Analysis
16.
Heliyon ; 10(4): e25990, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38404795

ABSTRACT

The diverse applications of various tissues of Polygonum Multiflorum (PM) encompass the use of its leaf and bud as tea and vegetables, as well as the utilization of its expanded root tubers and caulis as medicinal substances. However, previous studies in the field of metabolomics have primarily focused on the medicinal properties of PM. In order to investigate the potential for broader applications of other tissues within PM, a metabolomic analysis was conducted for the first time using UPLC-Q-TOF-MS/MS on 15 fresh PM tissues. A total of 231 compounds, including newly discovered compounds such as torosachrysone and dihydro-trihydroxystilbene acid derivatives, were identified within PM. Through clustering analysis, the PM tissues were categorized into edible and medicinal parts, with edible tissues exhibiting higher levels of phenolic acids, organic acids, and flavonoids, while the accumulation of quinones, dianthrones, stilbenes, and xanthones was observed in medicinal tissues. Comparative analysis demonstrated the potential application of discarded tissues, such as unexpanded root tuber (an industrial alternative to expanded root tuber) and young caulis (with edible potential). Moreover, the quantification of representative metabolites indicated that flowers and buds contained significant amounts of flavonoids or phenolic acids, suggesting their potential as functional food. Additionally, the edible portion of PM exhibited a high content of quercitrin, ranging from 0.59 to 10.37 mg/g. These findings serve as a valuable point of reference for the expanded utilization of PM tissues, thereby mitigating resource waste in this plant.

17.
Nanoscale ; 16(8): 4025-4038, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38347806

ABSTRACT

Many RNA-binding proteins such as fused-in sarcoma (FUS) can self-assemble into reversible liquid droplets and fibrils through the self-association of their low-complexity (LC) domains. Recent experiments have revealed that SYG-rich segments in the FUS LC domains play critical roles in the reversible self-assembly behaviors of FUS. These FUS LC segments alone can self-assemble into reversible kinked fibrils, which are markedly different from the canonical irreversible steric zipper ß-sheet fibrils. However, the molecular determinants underlying the reversible and irreversible self-assembly are poorly understood. Herein we conducted extensive all-atom and coarse-grained molecular dynamics simulations of four representative hexapeptides: two low-complexity aromatic-rich kinked peptides from the amyotrophic lateral sclerosis-related FUS protein, FUS37-42 (SYSGYS) and FUS54-59 (SYSSYG); and two steric zipper peptides from Alzheimer's-associated Aß and Tau proteins, Aß16-21 (KLVFFA) and Tau306-311 (VQIVYK). We dissected their reversible and irreversible self-assembly dynamics, predicted their phase separation behaviors, and elucidated the underpinning molecular interactions. Our simulations showed that alternating stickers (Tyr) and spacers (Gly and Ser) in FUS37-42 and FUS54-59 facilitate the formation of highly dynamic coil-rich oligomers and lead to reversible self-assembly, while consecutive hydrophobic residues of LVFF in Aß16-21 and IVY in Tau306-311 act as hydrophobic patches, favoring the formation of stable ß-sheet-rich oligomers and driving the irreversible self-assembly. Intriguingly, we found that FUS37-42 and FUS54-59 peptides, possessing the same amino acid composition and the same number of sticker and spacer residues, display differential self-assembly propensities. This finding suggests that the self-assembly behaviors of FUS peptides are fine-tuned by the site-specific patterning of spacer residues (Ser and Gly). This study provides significant mechanistic insights into reversible and irreversible peptide self-assembly, which would be helpful for understanding the molecular mechanisms underlying the formation of biological liquid condensates and pathological solid amyloid fibrils.


Subject(s)
Amyloid , Peptides , Protein Conformation , Amyloid/chemistry , Peptides/chemistry , Molecular Dynamics Simulation , Protein Conformation, beta-Strand
18.
Int J Nurs Stud ; 151: 104680, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228066

ABSTRACT

BACKGROUND: With the development of enhanced recovery after surgery, early oral feeding is likely to become the preferred mode of nutrition after surgery for upper gastrointestinal tract malignancies. However, the optimal time to initiate early oral feeding remains unknown. OBJECTIVE: We aimed to compare the effects of different introduction times of early oral feeding in patients with upper gastrointestinal malignancies in terms of safety, tolerance, and effectiveness and to identify the optimal time for early oral feeding after surgery. METHODS: A random-effects meta-analysis was performed to identify evidence from relevant randomized controlled trials. Ten electronic databases were searched for randomized controlled trials from their earliest records to May 2023. Data were analyzed using the Stata 16.0 software. RESULTS: A total of 22 randomized controlled trials including 2510 patients and seven time points for oral feeding after surgery were considered. Regarding safety, oral feeding initiated on postoperative day 3 may be the safest (high-quality evidence) compared with other times. Regarding tolerance, oral feeding initiated on postoperative day 5 may be the most well-tolerated (moderate-quality evidence) compared with other times. Regarding effectiveness, oral feeding initiated on postoperative day 3 may be the most effective (moderate-quality evidence) compared with other times. CONCLUSIONS: Early oral feeding is safe, tolerable, and effective in postoperative patients with upper gastrointestinal malignancies. The optimal time to initiate early oral feeding after surgery was most likely postoperative day 3. The results of this meta-analysis provide evidence-based guidelines for clinical decision-making.


Subject(s)
Gastrointestinal Neoplasms , Upper Gastrointestinal Tract , Humans , Postoperative Complications , Network Meta-Analysis , Time Factors , Gastrointestinal Neoplasms/surgery , Upper Gastrointestinal Tract/surgery
19.
Small ; 20(13): e2307333, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37967329

ABSTRACT

Reducing the dark current of photodetectors is an important strategy for enhancing the detection sensitivity, but hampered by the manufacturing cost due to the need for controlling the complex material composition and processing intricate interface. This study reports a new single-component photochromic semiconductor, [(HDMA)4(Pb3Br10)(PhSQ)2]n (1, HDMA = dimethylamine cation, PhSQ = 1-(4-sulfophenyl)-4,4'-bipyridinium), by introducing a redox-active monosubstituted viologen zwitterion into inorganic semiconducting skeleton. It features yellow to green coloration after UV irradiation with the sharply dropping intrinsic conductivity of 14.6-fold, and the photodetection detection sensitivity gain successfully doubles. The reason of decreasing conductivity originates from the increasing the band gap of the inorganic semiconducting component and formation of Frenkel excitons with strong Coulomb interactions, thereby decreasing the concentration of thermally excited intrinsic carriers.

20.
Small ; 20(9): e2307179, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37857576

ABSTRACT

Rechargeable battery devices with high energy density are highly demanded by the modern society. The use of lithium (Li) anodes is extremely attractive for future rechargeable battery devices. However, the notorious Li dendritic and instability of solid electrolyte interface (SEI) issues pose series of challenge for metal anodes. Here, based on the inspiration of in situ photoelectrochemical engineering, it is showed that a tailor-made composite photoanodes with good photoelectrochemical properties (Li affinity property and photocatalytic property) can significantly improve the electrochemical deposition behavior of Li anodes. The light-assisted Li anode is accommodated in the tailor-made current collector without uncontrollable Li dendrites. The as-prepared light-assisted Li metal anode can achieve the in situ stabilization of SEI layer under illumination. The corresponding in situ formation mechanism and photocatalytic mechanism of composite photoanodes are systematically investigated via DFT theoretical calculation, ex situ UV-vis and ex situ XPS characterization. It is worth mentioning that the as-prepared composite photoanodes can adapt to the ultra-high current density of 15 mA cm-2 and the cycle capacity of 15 mAh cm-2 under light, showing no dendritic morphology and low hysteresis voltage. This work is of great significance for the commercialization of new generation Li metal batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...