Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1183739, 2023.
Article in English | MEDLINE | ID: mdl-37324716

ABSTRACT

Wild rice (Zizania spp.), an aquatic grass belonging to the subfamily Gramineae, has a high economic value. Zizania provides food (such as grains and vegetables), a habitat for wild animals, and paper-making pulps, possesses certain medicinal values, and helps control water eutrophication. Zizania is an ideal resource for expanding and enriching a rice breeding gene bank to naturally preserve valuable characteristics lost during domestication. With the Z. latifolia and Z. palustris genomes completely sequenced, fundamental achievements have been made toward understanding the origin and domestication, as well as the genetic basis of important agronomic traits of this genus, substantially accelerating the domestication of this wild plant. The present review summarizes the research results on the edible history, economic value, domestication, breeding, omics research, and important genes of Z. latifolia and Z. palustris over the past decades. These findings broaden the collective understanding of Zizania domestication and breeding, furthering human domestication, improvement, and long-term sustainability of wild plant cultivation.

2.
J Phys Chem Lett ; 14(23): 5456-5465, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37288804

ABSTRACT

The van der Waals Fe5-xGeTe2 is a 3d ferromagnetic metal with a high Curie temperature of 275 K. We report herein the observation of an exceptional weak antilocalization (WAL) effect that can persist up to 120 K in an Fe5-xGeTe2 nanoflake, indicating the dual nature with both itinerant and localized magnetism of 3d electrons. The WAL behavior is characterized by the magnetoconductance peak around zero magnetic field and is supported by the calculated localized nondispersive flat band around the Fermi level. The peak to dip crossover starting around 60 K in magnetoconductance is visible, which could be ascribed to temperature-induced changes in Fe magnetic moments and the coupled electronic band structure as revealed by angle-resolved photoemission spectroscopy and first-principles calculations. Our findings would be instructive for understanding the magnetic exchanges in transition metal magnets as well as for the design of next-generation room-temperature spintronic devices.

3.
Nat Commun ; 14(1): 2465, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37117203

ABSTRACT

The fabrication of one-dimensional (1D) magnetic systems on solid surfaces, although of high fundamental interest, has yet to be achieved for a crossover between two-dimensional (2D) magnetic layers and their associated 1D spin chain systems. In this study, we report the fabrication of 1D single-unit-cell-width CrCl3 atomic wires and their stacked few-wire arrays on the surface of a van der Waals (vdW) superconductor NbSe2. Scanning tunneling microscopy/spectroscopy and first-principles calculations jointly revealed that the single wire shows an antiferromagnetic large-bandgap semiconducting state in an unexplored structure different from the well-known 2D CrCl3 phase. Competition among the total energies and nanostructure-substrate interfacial interactions of these two phases result in the appearance of the 1D phase. This phase was transformable to the 2D phase either prior to or after the growth for in situ or ex situ manipulations, in which the electronic interactions at the vdW interface play a nontrivial role that could regulate the dimensionality conversion and structural transformation between the 1D-2D CrCl3 phases.

4.
Adv Mater ; 35(24): e2300572, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37057612

ABSTRACT

After the preparation of 2D electronic flat band (EFB) in van der Waals (vdW) superlattices, recent measurements suggest the existence of 1D electronic flat bands (1D-EFBs) in twisted vdW bilayers. However, the realization of 1D-EFBs is experimentally elusive in untwisted 2D layers, which is desired considering their fabrication and scalability. Herein, the discovery of 1D-EFBs is reported in an untwisted in situ-grown two atomic-layer Bi(110) superlattice self-aligned on an SnSe(001) substrate using scanning probe microscopy measurements and density functional theory calculations. While the Bi-Bi dimers of Bi zigzag (ZZ) chains are buckled, the epitaxial lattice mismatch between the Bi and SnSe layers induces two 1D buckling reversal regions (BRRs) extending along the ZZ direction in each Bi(110)-11 × 11 supercell. A series of 1D-EFBs arises spatially following BRRs that isolate electronic states along the armchair (AC) direction and localize electrons in 1D extended states along ZZ due to quantum interference at a topological node. This work provides a generalized strategy for engineering 1D-EFBs in utilizing lattice mismatch between untwisted rectangular vdW layers.

6.
Adv Sci (Weinh) ; 9(23): e2200702, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35723437

ABSTRACT

Phase patterning in polymorphic two-dimensional (2D) materials offers diverse properties that extend beyond what their pristine structures can achieve. If precisely controllable, phase transitions can bring exciting new applications for nanometer-scale devices and ultra-large-scale integrations. Here, the focused electron beam is capable of triggering the phase transition from the semiconducting T'' phase to metallic T' and T phases in 2D rhenium disulfide (ReS2 ) and rhenium diselenide (ReSe2 ) monolayers, rendering ultra-precise phase patterning technique even in sub-nanometer scale is found. Based on knock-on effects and strain analysis, the phase transition mechanism on the created atomic vacancies and the introduced substantial in-plane compressive strain in 2D layers are clarified. This in situ high-resolution scanning transmission electron microscopy (STEM) and in situ electrical characterizations agree well with the density functional theory (DFT) calculation results for the atomic structures, electronic properties, and phase transition mechanisms. Grain boundary engineering and electrical contact engineering in 2D are thus developed based on this patterning technique. The patterning method exhibits great potential in ultra-precise electron beam lithography as a scalable top-down manufacturing method for future atomic-scale devices.

7.
J Zhejiang Univ Sci B ; 23(4): 328-338, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35403387

ABSTRACT

The aquatic grass Zizania latifolia grows symbiotically with the fungus Ustilago esculenta producing swollen structures called Jiaobai, widely cultivated in China. A new disease of Z. latifolia was found in Zhejiang Province, China. Initial lesions appeared on the leaf sheaths or sometimes on the leaves near the leaf sheaths. The lesions extended along the axis of the leaf shoots and formed long brown to dark brown streaks from the leaf sheath to the leaf, causing sheath rot and death of entire leaves on young plants. The pathogen was isolated and identified as the bacterium Pantoea ananatis, based on 16S ribosomal RNA (rRNA) gene sequencing, multilocus sequence analysis (atpD (ß-subunit of ATP synthase F1), gyrB (DNA gyrase subunit B), infB (translation initiation factor 2), and rpoB (ß|-subunit of RNA polymerase) genes), and pathogenicity tests. Ultrastructural observations using scanning electron microscopy revealed that the bacterial cells colonized the vascular tissues in leaf sheaths, forming biofilms on the inner surface of vessel walls, and extended between vessel elements via the perforated plates. To achieve efficient detection and diagnosis of P. ananatis, species-specific primer pairs were designed and validated by testing closely related and unrelated species and diseased tissues of Z. latifolia. This is the first report of bacterial sheath rot disease of Z. latifolia caused by P. ananatis in China.


Subject(s)
Pantoea , Plant Diseases , Pantoea/genetics , Plant Diseases/microbiology , Poaceae/genetics , Poaceae/microbiology , Virulence
8.
Commun Biol ; 5(1): 36, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017643

ABSTRACT

Chinese wild rice (Zizania latifolia; family: Gramineae) is a valuable medicinal homologous grain in East and Southeast Asia. Here, using Nanopore sequencing and Hi-C scaffolding, we generated a 547.38 Mb chromosome-level genome assembly comprising 332 contigs and 164 scaffolds (contig N50 = 4.48 Mb; scaffold N50 = 32.79 Mb). The genome harbors 38,852 genes, with 52.89% of the genome comprising repetitive sequences. Phylogenetic analyses revealed close relation of Z. latifolia to Leersia perrieri and Oryza species, with a divergence time of 19.7-31.0 million years. Collinearity and transcriptome analyses revealed candidate genes related to seed shattering, providing basic information on abscission layer formation and degradation in Z. latifolia. Moreover, two genomic blocks in the Z. latifolia genome showed good synteny with the rice phytocassane biosynthetic gene cluster. The updated genome will support future studies on the genetic improvement of Chinese wild rice and comparative analyses between Z. latifolia and other plants.


Subject(s)
Chromosomes, Plant/genetics , Genome, Plant/genetics , Poaceae/genetics , Seeds/genetics , China , Oryza/genetics , Phylogeny , Poaceae/metabolism
9.
Int J Mol Sci ; 22(11)2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34199611

ABSTRACT

Temperature influences the physiological processes and ecology of both hosts and endophytes; however, it remains unclear how long noncoding RNAs (lncRNAs) modulate the consequences of temperature-dependent changes in host-pathogen interactions. To explore the role of lncRNAs in culm gall formation induced by the smut fungus Ustilago esculenta in Zizania latifolia, we employed RNA sequencing to identify lncRNAs and their potential cis-targets in Z. latifolia and U. esculenta under different temperatures. In Z. latifolia and U. esculenta, we identified 3194 and 173 lncRNAs as well as 126 and four potential target genes for differentially expressed lncRNAs, respectively. Further function and expression analysis revealed that lncRNA ZlMSTRG.11348 regulates amino acid metabolism in Z. latifolia and lncRNA UeMSTRG.02678 regulates amino acid transport in U. esculenta. The plant defence response was also found to be regulated by lncRNAs and suppressed in Z. latifolia infected with U. esculenta grown at 25 °C, which may result from the expression of effector genes in U. esculenta. Moreover, in Z. latifolia infected with U. esculenta, the expression of genes related to phytohormones was altered under different temperatures. Our results demonstrate that lncRNAs are important components of the regulatory networks in plant-microbe-environment interactions, and may play a part in regulating culm swelling in Z. latifolia plants.


Subject(s)
Plant Diseases/genetics , Poaceae/genetics , RNA, Long Noncoding/genetics , Transcriptome/genetics , Endophytes/genetics , Endophytes/pathogenicity , Host-Pathogen Interactions/genetics , Plant Diseases/parasitology , Poaceae/growth & development , Sequence Analysis, RNA , Temperature , Ustilago/genetics , Ustilago/pathogenicity
10.
Materials (Basel) ; 13(11)2020 May 31.
Article in English | MEDLINE | ID: mdl-32486460

ABSTRACT

Black shale, which usually contains pyrite, is easily oxidized and generates acid discharge. This acidic environment is not favorable for concrete in engineering applications and is likely to affect the durability of engineering structures. This study investigated the effect of acid discharge from the weathering of black shale on the strength of concrete under partially immersed conditions. Black shale concrete immersion tests were conducted at different immersion depths to evaluate the oxidation conduction of black shale. Water chemistry and oxidation products were monitored during and after the immersion tests. The quality and strength of the black shale and concrete specimens were obtained before and after the immersion by testing the ultrasonic wave velocity and uniaxial compressive strength. The results indicated that a lower immersion depth of black shale reveals a higher degree of oxidation, and the capillary zone in black shale is critical for black shale oxidation in terms of mass transfer. The ultrasonic velocity of the concrete showed different change patterns in the immersed and non-immersed zones. Precipitation and additional hydration enhanced the quality and entirety of the concrete (increased ultrasonic velocity) at the non-immersed or partially-immersed zones, while the dissolution of concrete was dominant in the immersed zone (decreased ultrasonic velocity) and induced a reduction of concrete quality. The compressive strength of the concrete was enhanced after immersion. The concrete strength slightly increased by 5-15%. This phenomenon is attributed to the filling of the voids by the precipitations of minerals, such as goethite and anhydrite.

11.
Microb Pathog ; 143: 104107, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32120003

ABSTRACT

Ustilago esculenta, a smut fungus, can induce the formation of culm galls in Zizania latifolia, a vegetable consumed in many Asian countries. Specifically, the mycelia-teliospore (M-T) strain of U. esculenta induces the Jiaobai (JB) type of gall, while the teliospore (T) strain induces the Huijiao (HJ) type. The underlying molecular mechanism responsible for the formation of the two distinct types of gall remains unclear. Our results showed that most differentially expressed genes relevant to effector proteins were up-regulated in the T strain compared to those in the M-T strain during gall formation, and the expression of teliospore formation-related genes was higher in the T strain than the M-T strain. Melanin biosynthesis was also clearly induced in the T strain. The T strain exhibited stronger pathogenicity and greater teliospore production than the M-T strain. We evaluated the implications of the gene regulatory networks in the development of these two type of culm gall in Z. latifolia infected with U. esculenta and suggested potential targets for genetic manipulation to modify the gall type for this crop.


Subject(s)
Basidiomycota/metabolism , Gene Expression , Plant Tumors/microbiology , Poaceae/microbiology , Basidiomycota/genetics , Basidiomycota/pathogenicity , Gene Expression/physiology , Reverse Transcriptase Polymerase Chain Reaction , Transcriptome
12.
Plant Mol Biol ; 95(6): 533-547, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29076026

ABSTRACT

KEY MESSAGE: We report a transcriptome assembly and expression profiles from RNA-Seq data and identify genes responsible for culm gall formation in Zizania latifolia induced by Ustilago esculenta. The smut fungus Ustilago esculenta can induce culm gall in Zizania latifolia, which is used as a vegetable in Asian countries. However, the underlying molecular mechanism of culm gall formation is still unclear. To characterize the processes underlying this host-fungus association, we performed transcriptomic and expression profiling analyses of culms from Z. latifolia infected by the fungus U. esculenta. Transcriptomic analysis detected U. esculenta induced differential expression of 19,033 and 17,669 genes in Jiaobai (JB) and Huijiao (HJ) type of gall, respectively. Additionally, to detect the potential gall inducing genes, expression profiles of infected culms collected at -7, 1 and 10 DAS of culm gall development were  analyzed. Compared to control, we detected 8089 genes (4389 up-regulated, 3700 down-regulated) and 5251 genes (3121 up-regulated, 2130 down-regulated) were differentially expressed in JB and HJ, respectively. And we identified 376 host and 187 fungal candidate genes that showed stage-specific expression pattern, which are  possibly responsible for gall formation at the initial and later phases, respectively. Our results indicated that cytokinins play more prominent roles in regulating gall formation than do auxins. Together, our work provides general implications for the understanding of gene regulatory networks for culm gall development in Z. latifolia, and potential targets for genetic manipulation to improve the future yield   of  this crop.


Subject(s)
Plant Stems/growth & development , Plant Stems/genetics , Poaceae/genetics , Poaceae/microbiology , Sequence Analysis, RNA/methods , Ustilago/physiology , Biosynthetic Pathways/genetics , Cytokinins/biosynthesis , Down-Regulation/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Ontology , Genes, Fungal , Host-Pathogen Interactions/genetics , Indoleacetic Acids/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Stems/microbiology , Plant Tumors/microbiology , Poaceae/growth & development , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Transcriptome/genetics , Up-Regulation/genetics
13.
J Colloid Interface Sci ; 470: 1-9, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26928058

ABSTRACT

Improving the surface polarity is of significance for the post-cross-linked resins to enhance their adsorption to polar aromatic compounds. In the present study, we prepared a novel polar-modified post-cross-linked PDEpc_D by the Friedel-Crafts alkylation reaction and the amination reaction, the Brunauer-Emmett-Teller (BET) surface area and pore volume increased significantly after the Friedel-Crafts alkylation reaction and the surface polarity improved greatly after the amination reaction. Batch adsorption showed that PDEpc_D possessed a much enhanced adsorption to salicylic acid as compared the precursors PDE and PDEpc as well as the non-polar post-cross-linked PDVBpc. The equilibrium data was characterized by the Freundlich model, π-π stacking, hydrogen bonding and static interaction were the possible driving forces. The adsorption was a fast process and the kinetic data obeyed the micropore diffusion model. Column adsorption-desorption experiments suggested that PDEpc_D was a potential candidate for adsorptive removal of salicylic acid from aqueous solution.

14.
Plant Biotechnol J ; 12(1): 105-15, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24102834

ABSTRACT

The brassinosteroid (BR) response transcription factor Brassinazole resistant 1 (BZR1)-mediated BR signalling regulates many specific developmental processes including fruit ripening. Here, we report the effect of 2,4-epibrassinolide (EBR) and BZR1-1D overexpression on carotenoid accumulation and quality attributes of tomato (Solanum lycopersicum) fruit. EBR-treated pericarp discs of ethylene-insensitive mutant, Never ripe, accumulated significantly more carotenoid than those of the control. The results suggest that BR seems to be involved in modulating pigments accumulation. When three independent transgenic lines overexpressing the Arabidopsis BZR1-1D were used to evaluate the role of BZR1 in regulating tomato fruit carotenoid accumulation and quality attributes, fruits of all three transgenic lines exhibited enhanced carotenoid accumulation and increased soluble solid, soluble sugar and ascorbic acid contents during fruit ripening. In addition, the fruits of two transgenic lines showed dark green shoulder at mature green stage, in accordance with the up-regulated expression level of SlGLK2, which is involved in chloroplast development. Our results indicate the importance of BZR1-centred BR signalling in regulating carotenoid accumulation and quality attributes of tomato fruit and the potential application of the BZR1-like(s) for improvement of nutritional quality and flavour of tomato through genetic engineering.


Subject(s)
Carotenoids/metabolism , Fruit/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Solanum lycopersicum/metabolism , Transcription Factors/metabolism , Fruit/genetics , Gene Expression Regulation, Plant , Solanum lycopersicum/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Transcription Factors/genetics
15.
J Environ Radioact ; 129: 33-42, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24355402

ABSTRACT

The aim of the present work was to investigate the photosynthetic performance and antioxidant enzyme activities in response to γ-irradiation of an aquatic plant Zizania latifolia. The Z. latifolia seedlings at 6-leaf stage were exposed to 25, 50 and 100 Gy of γ rays from a (60)Co source. The growth parameters, chlorophyll contents, photosynthetic gas exchange, chlorophyll fluorescence, malondialdehyde (MDA) content, antioxidant enzyme activities and antioxidant contents were examined at 1-5 weeks post-irradiation (WPI). The results showed that plant height, leaf number and tiller (branch close to ground) number were significantly suppressed by 50 and 100 Gy irradiation at 5, 3-5 and 4-5 WPI, respectively, but they were not significantly different from control by 25 Gy irradiation. Chlorophyll a, chlorophyll b, and total chlorophyll contents were also found to be significantly decreased by irradiation. The net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci) and transpiration rate (Tr) generally declined in a dose-dependent manner. As for the chlorophyll fluorescence parameters, maximum quantum efficiency of PSII photochemistry (Fv/Fm), actual photochemical efficiency of PSII (Φ(PSII)) and photochemical quenching (qP) were observed to be significantly decreased compared to the control at 3 WPI, while non-photochemical quenching (NPQ) significantly increased by 100 Gy. γ-irradiation induced substantial increase in MDA content, ascorbate peroxidase (APX) activity, reduced ascorbate (AsA) content and reduced glutathione (GSH) content, suggesting a protective mechanism of Z. latifolia plant against oxidative stress when exposed to γ-irradiation.


Subject(s)
Cobalt Radioisotopes/toxicity , Gamma Rays/adverse effects , Poaceae/radiation effects , Ascorbic Acid/metabolism , Catalase/metabolism , Chlorophyll/metabolism , Glutathione/metabolism , Malondialdehyde/metabolism , Peroxidases/metabolism , Photosynthesis/radiation effects , Photosystem II Protein Complex/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/radiation effects , Poaceae/growth & development , Poaceae/metabolism , Superoxide Dismutase/metabolism
16.
Plant Cell Rep ; 26(9): 1585-93, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17541598

ABSTRACT

Phytoene synthase (PSY), as a key regulatory enzyme for carotene biosynthesis, plays an important role in regulating color formation in many species. In the present study, a protocol was developed for the transformation of Narcissus tazzeta var chinensis using Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pCAMBIA1301 plasmid which contained an antisense phytoene synthase gene, a reporter beta-glucuronidase gene and a selectable marker hygromycin phosphotransferase gene. Effects of some factors on efficiency of transformation and regeneration were examined. Preculture of the explants for 6 days before inoculation enhanced the transient GUS expression. The addition of acetosyringone (AS) at 100 micromol l(-1) for inoculation and a period of 3 days co-cultivation yielded efficient transient GUS expression. Transformants were obtained through selection on MS medium containing 5 mg l(-1) 6-benzylaminopurine (BA), 0.1 mg l(-1)alpha-naphthalene acetic acid (NAA) and 40 mg l(-1) hygromycin. The transformation frequency was 1.24% based on PCR analysis of gus gene. One or two copies of transgene were demonstrated in different transformations by Southern blotting analyses. Northern blotting results confirmed that the transcription of the endogenous psy gene in transgenic plants was inhibited or silenced. The method reported here provides new opportunities for improvement of quality traits of Narcissus tazzeta via genetic transformation.


Subject(s)
Agrobacterium tumefaciens/physiology , Narcissus/genetics , Transformation, Genetic , Agrobacterium tumefaciens/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cinnamates/pharmacology , DNA, Bacterial/metabolism , Genes, Plant , Genetic Vectors , Glucuronidase/metabolism , Hygromycin B/analogs & derivatives , Hygromycin B/pharmacology , Narcissus/cytology , Narcissus/drug effects , Narcissus/physiology , Plants, Genetically Modified , Regeneration/drug effects , Transformation, Genetic/drug effects
17.
Ying Yong Sheng Tai Xue Bao ; 14(5): 829-33, 2003 May.
Article in Chinese | MEDLINE | ID: mdl-12924150

ABSTRACT

Rice allelopathy is implemented through its release of allelochemicals to environment. Many researchers considered that rice allelochemicals were phenolics. The action mechanisms of rice against weeds allelochemicals included the inhibition of seed germination and emergence, the effect on the balance of hormones, the damage on the integrity of cell membrane systems, the effect on photosynthesis and respiration, the disturbance of nutrient and water uptake and the effect on the protein synthesis and gene expression. Rice allelopathy is controlled by polygenes, and inherited quantitatively. Several QTLs were identified by the methods of molecular biological techniques and allelopathic bioassay. It might be the important research work to locate the QTLs accurately and to clone the allelopathic genes with the method of marker-assisted selection and the near isogenic lines.


Subject(s)
Herbicides/pharmacology , Oryza/genetics , Pheromones/pharmacology , Cloning, Molecular , Genetic Markers , Oryza/physiology , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...