Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 134(7)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37401147

ABSTRACT

AIM: Ammonia released during the storage period from pig manure causes severe air pollution and odor issues, ultimately leading to nitrogen loss in the manure. In this study, we investigated the application of 13 Bacillus spp. strains isolated from paddy soil and their potential to minimize reactive nitrogen loss during pig manure storage at 28°C and initial moisture content at 76.45%. METHODS AND RESULTS: We selected five strains of Bacillus spp. named H3-1, H4-10, H5-5, H5-9, and Y3-28, capable of reducing ammonia emissions by 23.58%, 24.65%, 25.58%, 25.36%, and 26.82% in pig manure over 60 days compared to control. We further tested their ability on various pH, salinity, and ammonium-nitrogen concentrations for future field applications. Our investigation revealed that certain bacteria could survive and grow at pH 6, 8, and 10; 4, 8, and 10% salinity and up to 8 g l-1 of ammonium-nitrogen concentration. CONCLUSIONS: The results from our study show that saline and ammonium-nitrogen tolerant Bacillus strains isolated from soil can potentially reduce ammonia emissions in pig manure, even at high moisture content during their storage period.


Subject(s)
Ammonium Compounds , Bacillus , Animals , Swine , Ammonia/analysis , Manure/microbiology , Nitrogen/analysis , Soil , Sodium Chloride , Hydrogen-Ion Concentration
2.
Anal Chem ; 95(18): 7220-7228, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37115661

ABSTRACT

For a large-scale metabolomics study, sample collection, preparation, and analysis may last several days, months, or even (intermittently) over years. This may lead to apparent batch effects in the acquired metabolomics data due to variability in instrument status, environmental conditions, or experimental operators. Batch effects may confound the true biological relationships among metabolites and thus obscure real metabolic changes. At present, most of the commonly used batch effect correction (BEC) methods are based on quality control (QC) samples, which require sufficient and stable QC samples. However, the quality of the QC samples may deteriorate if the experiment lasts for a long time. Alternatively, isotope-labeled internal standards have been used, but they generally do not provide good coverage of the metabolome. On the other hand, BEC can also be conducted through a data-driven method, in which no QC sample is needed. Here, we propose a novel data-driven BEC method, namely, CordBat, to achieve concordance between each batch of samples. In the proposed CordBat method, a reference batch is first selected from all batches of data, and the remaining batches are referred to as "other batches." The reference batch serves as the baseline for the batch adjustment by providing a coordinate of correlation between metabolites. Next, a Gaussian graphical model is built on the combined dataset of reference and other batches, and finally, BEC is achieved by optimizing the correction coefficients in the other batches so that the correlation between metabolites of each batch and their combinations are in concordance with that of the reference batch. Three real-world metabolomics datasets are used to evaluate the performance of CordBat by comparing it with five commonly used BEC methods. The present experimental results showed the effectiveness of CordBat in batch effect removal and the concordance of correlation between metabolites after BEC. CordBat was found to be comparable to the QC-based methods and achieved better performance in the preservation of biological effects. The proposed CordBat method may serve as an alternative BEC method for large-scale metabolomics that lack proper QC samples.


Subject(s)
Metabolome , Metabolomics , Mass Spectrometry/methods , Quality Control , Metabolomics/methods
3.
J Proteome Res ; 19(5): 1965-1974, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32174118

ABSTRACT

In metabolomics, identification of metabolic pathways altered by disease, genetics, or environmental perturbations is crucial to uncover the underlying biological mechanisms. A number of pathway analysis methods are currently available, which are generally based on equal-probability, topological-centrality, or model-separability methods. In brief, prior identification of significant metabolites is needed for the first two types of methods, while each pathway is modeled separately in the model-separability-based methods. In these methods, interactions between metabolic pathways are not taken into consideration. The current study aims to develop a novel metabolic pathway identification method based on multi-block partial least squares (MB-PLS) analysis by including all pathways into a global model to facilitate biological interpretation. The detected metabolites are first assigned to pathway blocks based on their roles in metabolism as defined by the KEGG pathway database. The metabolite intensity or concentration data matrix is then reconstructed as data blocks according to the metabolite subsets. Then, a MB-PLS model is built on these data blocks. A new metric, named the pathway importance in projection (PIP), is proposed for evaluation of the significance of each metabolic pathway for group separation. A simulated dataset was generated by imposing artificial perturbation on four pre-defined pathways of the healthy control group of a colorectal cancer study. Performance of the proposed method was evaluated and compared with seven other commonly used methods using both an actual metabolomics dataset and the simulated dataset. For the real metabolomics dataset, most of the significant pathways identified by the proposed method were found to be consistent with the published literature. For the simulated dataset, the significant pathways identified by the proposed method are highly consistent with the pre-defined pathways. The experimental results demonstrate that the proposed method is effective for identification of significant metabolic pathways, which may facilitate biological interpretation of metabolomics data.


Subject(s)
Metabolic Networks and Pathways , Metabolomics , Least-Squares Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...