Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
PLoS One ; 18(9): e0291235, 2023.
Article in English | MEDLINE | ID: mdl-37708178

ABSTRACT

In recent years, public sports services have attracted great attention owing to their increasingly important role in public health. However, effective evaluation metrics measuring the efficiency of such services from a spatial perspective (e.g., accessibility and distribution of sports parks) remain absent. Indeed, most designs of sports park distribution in urban areas did not consider practical factors such as local road networks, population distribution, and resident preference, resulting in low utilization rates of these parks. In this study, a spatial accessibility-based method is proposed for evaluation of the distributions of sports parks. As a demonstration, the distribution of sports parks in the central urban area of Changsha, China was investigated using the proposed method by the GIS network analysis. Additionally, optimization strategies for sports park distribution (in terms of spatial distribution and overall accessibility) were developed by using spatial syntax.


Subject(s)
Benchmarking , Sports , China , Public Health
2.
Article in English | MEDLINE | ID: mdl-37015418

ABSTRACT

Fusing intraoperative 2-D ultrasound (US) frames with preoperative 3-D magnetic resonance (MR) images for guiding interventions has become the clinical gold standard in image-guided prostate cancer biopsy. However, developing an automatic image registration system for this application is challenging because of the modality gap between US/MR and the dimensionality gap between 2-D/3-D data. To overcome these challenges, we propose a novel US frame-to-volume registration (FVReg) pipeline to bridge the dimensionality gap between 2-D US frames and 3-D US volume. The developed pipeline is implemented using deep neural networks, which are fully automatic without requiring external tracking devices. The framework consists of three major components, including one) a frame-to-frame registration network (Frame2Frame) that estimates the current frame's 3-D spatial position based on previous video context, two) a frame-to-slice correction network (Frame2Slice) adjusting the estimated frame position using the 3-D US volumetric information, and three) a similarity filtering (SF) mechanism selecting the frame with the highest image similarity with the query frame. We validated our method on a clinical dataset with 618 subjects and tested its potential on real-time 2-D-US to 3-D-MR fusion navigation tasks. The proposed FVReg achieved an average target navigation error of 1.93 mm at 5-14 fps. Our source code is publicly available at https://github.com/DIAL-RPI/Frame-to-Volume-Registration.


Subject(s)
Deep Learning , Prostatic Neoplasms , Male , Humans , Imaging, Three-Dimensional/methods , Ultrasonography , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/surgery , Neural Networks, Computer
3.
IEEE Trans Biomed Eng ; 70(3): 970-979, 2023 03.
Article in English | MEDLINE | ID: mdl-36103448

ABSTRACT

Transrectal ultrasound is commonly used for guiding prostate cancer biopsy, where 3D ultrasound volume reconstruction is often desired. Current methods for 3D reconstruction from freehand ultrasound scans require external tracking devices to provide spatial information of an ultrasound transducer. This paper presents a novel deep learning approach for sensorless ultrasound volume reconstruction, which efficiently exploits content correspondence between ultrasound frames to reconstruct 3D volumes without external tracking. The underlying deep learning model, deep contextual-contrastive network (DC 2-Net), utilizes self-attention to focus on the speckle-rich areas to estimate spatial movement and then minimizes a margin ranking loss for contrastive feature learning. A case-wise correlation loss over the entire input video helps further smooth the estimated trajectory. We train and validate DC 2-Net on two independent datasets, one containing 619 transrectal scans and the other having 100 transperineal scans. Our proposed approach attained superior performance compared with other methods, with a drift rate of 9.64 % and a prostate Dice of 0.89. The promising results demonstrate the capability of deep neural networks for universal ultrasound volume reconstruction from freehand 2D ultrasound scans without tracking information.


Subject(s)
Imaging, Three-Dimensional , Neural Networks, Computer , Male , Humans , Imaging, Three-Dimensional/methods , Ultrasonography/methods , Prostate/diagnostic imaging , Movement
4.
Oxid Med Cell Longev ; 2022: 3948921, 2022.
Article in English | MEDLINE | ID: mdl-36164392

ABSTRACT

Acute intracerebral hemorrhage (ICH) is a devastating type of stroke worldwide. Neuronal destruction involved in the brain damage process caused by ICH includes a primary injury formed by the mass effect of the hematoma and a secondary injury induced by the degradation products of a blood clot. Additionally, factors in the coagulation cascade and complement activation process also contribute to secondary brain injury by promoting the disruption of the blood-brain barrier and neuronal cell degeneration by enhancing the inflammatory response, oxidative stress, etc. Although treatment options for direct damage are limited, various strategies have been proposed to treat secondary injury post-ICH. Perihematomal edema (PHE) is a potential surrogate marker for secondary injury and may contribute to poor outcomes after ICH. Therefore, it is essential to investigate the underlying pathological mechanism, evolution, and potential therapeutic strategies to treat PHE. Here, we review the pathophysiology and imaging characteristics of PHE at different stages after acute ICH. As illustrated in preclinical and clinical studies, we discussed the merits and limitations of varying PHE quantification protocols, including absolute PHE volume, relative PHE volume, and extension distance calculated with images and other techniques. Importantly, this review summarizes the factors that affect PHE by focusing on traditional variables, the cerebral venous drainage system, and the brain lymphatic drainage system. Finally, to facilitate translational research, we analyze why the relationship between PHE and the functional outcome of ICH is currently controversial. We also emphasize promising therapeutic approaches that modulate multiple targets to alleviate PHE and promote neurologic recovery after acute ICH.


Subject(s)
Brain Edema , Biomarkers , Brain Edema/pathology , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/therapy , Edema , Hematoma/pathology , Humans
5.
Med Image Anal ; 82: 102612, 2022 11.
Article in English | MEDLINE | ID: mdl-36126402

ABSTRACT

In the past few years, convolutional neural networks (CNNs) have been proven powerful in extracting image features crucial for medical image registration. However, challenging applications and recent advances in computer vision suggest that CNNs are limited in their ability to understand the spatial correspondence between features, which is at the core of image registration. The issue is further exaggerated when it comes to multi-modal image registration, where the appearances of input images can differ significantly. This paper presents a novel cross-modal attention mechanism for correlating features extracted from the multi-modal input images and mapping such correlation to image registration transformation. To efficiently train the developed network, a contrastive learning-based pre-training method is also proposed to aid the network in extracting high-level features across the input modalities for the following cross-modal attention learning. We validated the proposed method on transrectal ultrasound (TRUS) to magnetic resonance (MR) registration, a clinically important procedure that benefits prostate cancer biopsy. Our experimental results demonstrate that for MR-TRUS registration, a deep neural network embedded with the cross-modal attention block outperforms other advanced CNN-based networks with ten times its size. We also incorporated visualization techniques to improve the interpretability of our network, which helps bring insights into the deep learning based image registration methods. The source code of our work is available at https://github.com/DIAL-RPI/Attention-Reg.


Subject(s)
Prostate , Prostatic Neoplasms , Humans , Male , Prostate/diagnostic imaging , Neural Networks, Computer , Magnetic Resonance Imaging/methods , Prostatic Neoplasms/pathology , Ultrasonography/methods
6.
Nat Commun ; 12(1): 2963, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34017001

ABSTRACT

Cancer patients have a higher risk of cardiovascular disease (CVD) mortality than the general population. Low dose computed tomography (LDCT) for lung cancer screening offers an opportunity for simultaneous CVD risk estimation in at-risk patients. Our deep learning CVD risk prediction model, trained with 30,286 LDCTs from the National Lung Cancer Screening Trial, achieves an area under the curve (AUC) of 0.871 on a separate test set of 2,085 subjects and identifies patients with high CVD mortality risks (AUC of 0.768). We validate our model against ECG-gated cardiac CT based markers, including coronary artery calcification (CAC) score, CAD-RADS score, and MESA 10-year risk score from an independent dataset of 335 subjects. Our work shows that, in high-risk patients, deep learning can convert LDCT for lung cancer screening into a dual-screening quantitative tool for CVD risk estimation.


Subject(s)
Cardiovascular Diseases/epidemiology , Deep Learning , Image Processing, Computer-Assisted/methods , Lung Neoplasms/diagnosis , Mass Screening/statistics & numerical data , Adult , Aged , Aged, 80 and over , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/etiology , Clinical Trials as Topic , Coronary Vessels/diagnostic imaging , Datasets as Topic , Electrocardiography , Female , Follow-Up Studies , Humans , Lung/diagnostic imaging , Lung Neoplasms/complications , Male , Mass Screening/methods , Middle Aged , ROC Curve , Retrospective Studies , Risk Assessment/methods , Risk Assessment/statistics & numerical data , Risk Factors , Tomography, X-Ray Computed/statistics & numerical data
7.
Comput Med Imaging Graph ; 84: 101769, 2020 09.
Article in English | MEDLINE | ID: mdl-32771771

ABSTRACT

Artificial intelligence, especially the deep learning paradigm, has posed a considerable impact on cancer imaging and interpretation. For instance, fusing transrectal ultrasound (TRUS) and magnetic resonance (MR) images to guide prostate cancer biopsy can significantly improve the diagnosis. However, multi-modal image registration is still challenging, even with the latest deep learning technology, as it requires large amounts of labeled transformations for network training. This paper aims to address this problem from two angles: (i) a new method of generating large amount of transformations following a targeted distribution to improve the network training and (ii) a coarse-to-fine multi-stage method to gradually map the distribution from source to target. We evaluate both innovations based on a multi-modal prostate image registration task, where a T2-weighted MR volume and a reconstructed 3D ultrasound volume are to be aligned. Our results demonstrate that the use of data generation can significantly reduce the registration error by up to 62%. Moreover, the multi-stage coarse-to-fine registration technique results in a mean surface registration error (SRE) of 3.66 mm (with the initial mean SRE of 9.42 mm), which is found to be significantly better than the one-step registration with a mean SRE of 4.08 mm.


Subject(s)
Artificial Intelligence , Prostatic Neoplasms , Humans , Magnetic Resonance Imaging , Male , Prostatic Neoplasms/diagnostic imaging , Ultrasonography
8.
IEEE J Biomed Health Inform ; 24(2): 457-464, 2020 02.
Article in English | MEDLINE | ID: mdl-31603807

ABSTRACT

Low-Dose CT (LDCT) can significantly improve the accuracy of lung cancer diagnosis and thus reduce cancer deaths compared to chest X-ray. The lung cancer risk population is also at high risk of other deadly diseases, for instance, cardiovascular diseases. Therefore, predicting the all-cause mortality risks of this population is of great importance. This paper introduces a knowledge-based analytical method using deep convolutional neural network (CNN) for all-cause mortality prediction. The underlying approach combines structural image features extracted from CNNs, based on LDCT volume at different scales, and clinical knowledge obtained from quantitative measurements, to predict the mortality risk of lung cancer screening subjects. The proposed method is referred as Knowledge-based Analysis of Mortality Prediction Network (KAMP-Net). It constitutes a collaborative framework that utilizes both imaging features and anatomical information, instead of completely relying on automatic feature extraction. Our work demonstrates the feasibility of incorporating quantitative clinical measurements to assist CNNs in all-cause mortality prediction from chest LDCT images. The results of this study confirm that radiologist defined features can complement CNNs in performance improvement. The experiments demonstrate that KAMP-Net can achieve a superior performance when compared to other methods.


Subject(s)
Lung Neoplasms/diagnostic imaging , Lung Neoplasms/mortality , Tomography, X-Ray Computed/methods , Early Detection of Cancer , Humans , Image Processing, Computer-Assisted/methods
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 6243-6246, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31947269

ABSTRACT

Known for its high morbidity and mortality rates, lung cancer poses a significant threat to human health and well-being. However, the same population is also at high risk for other deadly diseases, such as cardiovascular disease. Since Low-Dose CT (LDCT) has been shown to significantly improve the lung cancer diagnosis accuracy, it will be very useful for clinical practice to predict the all-cause mortality for lung cancer patients to take corresponding actions. In this paper, we propose a deep learning based method, which takes both chest LDCT image patches and coronary artery calcification risk scores as input to predict the mortality risk of lung cancer subjects. The proposed method is called Hybrid Risk Network (HyRiskNet) for mortality risk prediction, which is an end-to-end framework utilizing hybrid imaging features, instead of completely relying on automatic feature extraction. Our work demonstrates the feasibility of using deep learning techniques for all-cause lung cancer mortality prediction from chest LDCT images. The experimental results show that HyRiskNet can achieve superior performance compared with the neural networks with only image input and with other traditional semi-automatic scoring methods. The study also indicates that radiologist defined features can well complement convolutional neural networks for more comprehensive feature extraction.


Subject(s)
Deep Learning , Lung Neoplasms/diagnostic imaging , Neural Networks, Computer , Tomography, X-Ray Computed , Coronary Artery Disease , Humans , Lung Neoplasms/mortality , Risk Assessment/methods , Thorax
SELECTION OF CITATIONS
SEARCH DETAIL
...