Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.957
Filter
1.
China CDC Wkly ; 6(18): 408-412, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38737480

ABSTRACT

Objective: Foodborne diseases pose a significant public health concern globally. This study aims to analyze the correlation between disease prevalence and climatic conditions, forecast the pattern of foodborne disease outbreaks, and offer insights for effective prevention and control strategies and optimizing health resource allocation policies in Guizhou Province. Methods: This study utilized the χ2 test and four comprehensive prediction models to analyze foodborne disease outbreaks recorded in the Guizhou Foodborne Disease Outbreak system between 2012 and 2022. The best-performing model was chosen to forecast the trend of foodborne disease outbreaks in Guizhou Province, 2023-2025. Results: Significant variations were observed in the incidence of foodborne disease outbreaks in Guizhou Province concerning various meteorological factors (all P≤0.05). Among all models, the SARIMA-ARIMAX combined model demonstrated the most accurate predictive performance (RMSE: Prophet model=67.645, SARIMA model=3.953, ARIMAX model=26.544, SARIMA-ARIMAX model=26.196; MAPE: Prophet model=42.357%, SARIMA model=37.740%, ARIMAX model=15.289%, SARIMA-ARIMAX model=13.961%). Conclusion: The analysis indicates that foodborne disease outbreaks in Guizhou Province demonstrate distinct seasonal patterns. It is recommended to concentrate prevention efforts during peak periods. The SARIMA-ARIMAX hybrid model enhances the precision of monthly forecasts for foodborne disease outbreaks, offering valuable insights for future prevention and control strategies.

2.
Nat Commun ; 15(1): 3858, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719855

ABSTRACT

Experimental characterization of the transition state poses a significant challenge due to its fleeting nature. Negative ion photodetachment offers a unique tool for probing transition states and their vicinity. However, this approach is usually limited to Franck-Condon regions. For example, high-lying Feshbach resonances with an excited HF stretching mode (vHF = 2-4) were recently identified in the transition-state region of the F + NH3 → HF + NH2 reaction through photo-detaching FNH3- anions, but the direct photodetachment failed to observe the lower-lying vHF = 0,1 resonances and bound states due apparently to negligible Franck-Condon factors. Indeed, these weak transitions can be resonantly enhanced via a dipole-bound state (DBS) formed between an electron and the polar FNH3 species. In this study, we unveil a series of Feshbach resonances and bound states along the F + NH3 reaction path via a DBS by combining high-resolution photoelectron spectroscopy with high-level quantum dynamical computations. This study presents an approach for probing the activated complex in a reaction by negative ion photodetachment through a DBS.

3.
Aesthetic Plast Surg ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740626

ABSTRACT

BACKGROUND: Each year, tens of thousands of people worldwide choose to undergo cosmetic surgery in order to alter their appearance. In recent years, young people have gradually emerged to comprise the main driving force behind the increasing demand for cosmetic surgery. Previous studies have found that sexism may motivate young people to undergo such surgeries. However, few studies have been conducted to determine if this psychological mechanism influences the acceptance of cosmetic surgery among Chinese university students. METHODS: A total of 579 Chinese university students (280 girls and 299 boys, 17-20 years) volunteered to participate in the online survey. They completed a questionnaire containing the Ambivalent Sexism Inventory, the 12-item General Health Questionnaire, the Gender-Role Attitudes Questionnaire and the Acceptance of Cosmetic Surgery Scale. We firstly evaluated the underlying factor structure of the Acceptance of Cosmetic Surgery Scale using exploratory and confirmatory factor analyses, and exploring pattern of associations between the constructs was analyzed via path analysis. RESULTS: According to the findings, hostile sexism was associated with greater levels of acceptance toward cosmetic surgery. Moreover, gender-role attitudes mediated the link between hostile sexism and the acceptance of cosmetic surgery, and this mediation was positively influenced by general mental health. CONCLUSION: Our study contributes to a deeper understanding of Chinese university students' attitudes toward cosmetic surgery, hostile sexism may contribute to normalizing traditional gender stereotypes and encourage cosmetic surgery acceptability among Chinese university students. LEVEL OF EVIDENCE V: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

4.
Hepatol Int ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767772

ABSTRACT

BACKGROUND: Combined hepatocellular-cholangiocarcinoma (cHCC-CCA), as a rare primary hepatic tumor, is challenging to accurately assess in terms of the clinical outcomes and prognostic risk factors in patients. This study aimed to clarify the function of tertiary lymphoid structure (TLS) status in predicting the outcome of cHCC-CCA and to preliminarily explore the possible mechanism of TLS formation. METHODS: The TLSs, with different spatial distributions and densities, of 137 cHCC-CCA were quantified, and their association with prognosis was assessed by Cox regression and Kaplan-Meier analyses. We further validated TLS possible efficacy in predicting immunotherapy responsiveness in two cHCC-CCA case reports. TLS composition and its relationship to CXCL12 expression were analysed by fluorescent multiplex immunohistochemistry. RESULTS: A high intratumoural TLS score was correlated with prolonged survival, whereas a high TLS density in adjacent tissue indicated a worse prognosis in cHCC-CCA. Mature TLSs were related to favorable outcomes and showed more CD8 + T cells infiltrating tumor tissues. We further divided the cHCC-CCA patients into four immune grades by combining the peri-TLS and intra-TLS, and these grades were an independent prognostic factor. In addition, our reported cases suggested a potential value of TLS in predicting immunotherapy response in cHCC-CCA patients. Our findings suggested that CXCL12 expression in cHCC-CCA tissue was significantly correlated with TLS presence. CONCLUSION: The spatial distribution and density of TLSs revealing the characteristics of the cHCC-CCA immune microenvironment, significantly correlated with prognosis and provided a potential immunotherapy response biomarker for cHCC-CCA.

5.
Nano Lett ; 24(20): 6038-6042, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38735063

ABSTRACT

Polymer nanofibers hold promise in a wide range of applications owing to their diverse properties, flexibility, and cost effectiveness. In this study, we introduce a polymer nanofiber drawing process in a scanning electron microscope and focused ion beam (SEM/FIB) instrument with in situ observation. We employed a nanometer-sharp tungsten needle and prepolymer microcapsules to enable nanofiber drawing in a vacuum environment. This method produces individual polymer nanofibers with diameters as small as ∼500 nm and lengths extending to millimeters, yielding nanofibers with an aspect ratio of 2000:1. The attachment to the tungsten manipulator ensures accurate transfer of the polymer nanofiber to diverse substrate types as well as fabrication of assembled structures. Our findings provide valuable insights into ultrafine polymer fiber drawing, paving the way for high-precision manipulation and assembly of polymer nanofibers.

6.
J Am Chem Soc ; 146(20): 14182-14193, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38741473

ABSTRACT

The activation of carbon dioxide (CO2) by a transition-metal cation in the gas phase is a unique model system for understanding single-atom catalysis. The mechanism of such reactions is often attributed to a "two-state reactivity" model in which the high-energy barrier of a spin state correlating with ground-state reactants is avoided by intersystem crossing (ISC) to a different spin state with a lower barrier. However, such a "spin-forbidden" mechanism, along with the corresponding dynamics, has seldom been rigorously examined theoretically, due to the lack of global potential energy surfaces (PESs). In this work, we report full-dimensional PESs of the lowest-lying quintet, triplet, and singlet states of the TaCO2+ system, machine-learned from first-principles data. These PESs and the corresponding spin-orbit couplings enable us to provide an extensive theoretical characterization of the dynamics and kinetics of the reaction between the tantalum cation (Ta+) and CO2, which have recently been investigated experimentally at high collision energies using crossed beams and velocity map imaging, as well as at thermal energies using a selected-ion flow tube apparatus. The multistate quasi-classical trajectory simulations with surface hopping reproduce most of the measured product translational and angular distributions, shedding valuable light on the nonadiabatic reaction dynamics. The calculated rate coefficients from 200 to 600 K are also in good agreement with the latest experimental measurements. More importantly, these calculations revealed that the reaction is controlled by intersystem crossing, rather than potential barriers.

7.
Development ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38770916

ABSTRACT

Prolyl hydroxylase domain (PHD) proteins are oxygen sensors that use intracellular oxygen as a substrate to hydroxylate hypoxia inducible factor (HIF)-α proteins, routing them for polyubiquitination and proteasomal degradation. Typically, HIF-α accumulation in hypoxic or PHD-deficient tissues leads to upregulated angiogenesis. Here we report unexpected retinal phenotypes associated with endothelial cell (EC)-specific gene targeting of Phd2 and Hif-2α. EC-specific Phd2 disruption suppressed retinal angiogenesis, despite HIF-α accumulation and VEGF-A upregulation. Suppressed retinal angiogenesis was observed both in development and in the oxygen-induced retinopathy (OIR) model. On the other hand, EC-specific deletion of Hif-1α, Hif-2α, or both did not affect retinal vascular morphogenesis. Strikingly, retinal angiogenesis appeared normal in mice double-deficient for endothelial PHD2 and HIF-2α. In PHD2-deficient retinal vasculature, Delta-like 4 (DLL4, a NOTCH ligand) and HEY2 (a NOTCH target) were upregulated by HIF-2α-dependent mechanisms. Inhibition of NOTCH signaling by a chemical inhibitor or DLL4 antibody partially rescued retinal angiogenesis. Taken together, our data demonstrate that HIF-2α accumulation in retinal ECs inhibits rather than stimulates retinal angiogenesis, in part by upregulating DLL4 expression and NOTCH signaling.

8.
Sci Total Environ ; 933: 173152, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38735327

ABSTRACT

Zinc (Zn) is an essential trace element that is required for various biological functions, but excessive exposure to Zn is associated with many disorders and even diseases. However, the health effects and underlying mechanisms of long-term and high concentration exposure of Zn remain to be unclear. In the present study, we investigated the association between occupational exposure to Zn and liver function indicators (like alanine aminotransferase (ALT)) in workers. We found a positive association between Zn exposure and ALT level in workers. Workers having higher blood Zn (7735.65 (1159.15) µg/L) shows a 30.4 % increase in ALT level compared to those with lower blood Zn (5969.30 (989.26) µg/L). Furthermore, we explored the effects of phospholipids (PLs) and their metabolism on ALT level and discovered that Zn exposure in workers was associated with changes in PL levels and metabolism, which had further effects on increased ALT levels in workers. The study provides insights into the relationship between occupational Zn exposure and liver function, highlights the risk of long-term exposure to high concentrations of Zn, and paves the way for understanding the underlying mechanisms of Zn exposure on human health.

9.
Cancer Lett ; 592: 216929, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38697461

ABSTRACT

Small cell lung cancer (SCLC) is a recalcitrant cancer characterized by high frequency loss-of-function mutations in tumor suppressors with a lack of targeted therapy due to absence of high frequency gain-of-function abnormalities in oncogenes. SMARCAL1 is a member of the ATP-dependent chromatin remodeling protein SNF2 family that plays critical roles in DNA damage repair and genome stability maintenance. Here, we showed that SMARCAL1 was overexpressed in SCLC patient samples and was inversely associated with overall survival of the patients. SMARCAL1 was required for SCLC cell proliferation and genome integrity. Mass spectrometry revealed that PAR6B was a downstream SMARCAL1 signal molecule which rescued inhibitory effects caused by silencing of SMARCAL1. By screening of 36 FDA-approved clinically available agents related to DNA damage repair, we found that an aza-anthracenedione, pixantrone, was a potent SMARCAL1 inhibitor which suppressed the expression of SMARCAL1 and PAR6B at protein level. Pixantrone caused DNA damage and exhibited inhibitory effects on SCLC cells in vitro and in a patient-derived xenograft mouse model. These results indicated that SMARCAL1 functions as an oncogene in SCLC, and pixantrone as a SMARCAL1 inhibitor bears therapeutic potentials in this deadly disease.

10.
Article in English | MEDLINE | ID: mdl-38715982

ABSTRACT

Purpose: Investigate the efficacy of blood microRNAs (miRNAs) as diagnostic biomarkers for Chronic Obstructive Pulmonary Disease (COPD). Patients and Methods: We conducted a comprehensive search in English and Chinese databases, selecting studies based on predetermined criteria. Diagnostic parameters like summarized sensitivity (SSEN), summarized specificity (SSPE), summarized positive likelihood ratio (SPLR), summarized negative likelihood ratio (SNLR), and diagnostic odds ratio (DOR), and area under the curve (AUC) of the summary receiver operating characteristic (SROC) curves were analyzed using a bivariate model. Each parameter was accompanied by a 95% confidence interval (CI). Results: Eighteen high-quality studies were included. For diagnosing COPD with blood miRNAs, the SSEN was 0.83 (95% CI 0.76-0.89), SSPE 0.76 (95% CI 0.70-0.82), SPLR 3.50 (95% CI 2.66-4.60), SNLR 0.22 (95% CI 0.15-0.33), DOR 15.72 (95% CI 8.58-28.77), and AUC 0.86 (95% CI 0.82-0.88). In acute exacerbations, SSEN was 0.85 (95% CI 0.76-0.91), SSPE 0.80 (95% CI 0.73-0.86), SPLR 4.26 (95% CI 3.05-5.95), SNLR 0.19 (95% CI 0.12-0.30), DOR 22.29 (95% CI 11.47-43.33), and AUC 0.89 (95% CI 0.86-0.91). Conclusion: Blood miRNAs demonstrate significant accuracy in diagnosing COPD, both in general and during acute exacerbations, suggesting their potential as reliable biomarkers.


Subject(s)
Area Under Curve , Predictive Value of Tests , Pulmonary Disease, Chronic Obstructive , ROC Curve , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/genetics , Humans , Odds Ratio , MicroRNAs/blood , Biomarkers/blood , Middle Aged , Aged , Genetic Markers , Male , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Female , Prognosis , Lung/physiopathology
11.
FASEB J ; 38(9): e23630, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38713100

ABSTRACT

Heat shock proteins (HSPs) are a group of highly conserved proteins found in a wide range of organisms. In recent years, members of the HSP family were overexpressed in various tumors and widely involved in oncogenesis, tumor development, and therapeutic resistance. In our previous study, DNAJC24, a member of the DNAJ/HSP40 family of HSPs, was found to be closely associated with the malignant phenotype of hepatocellular carcinoma. However, its relationship with other malignancies needs to be further explored. Herein, we demonstrated that DNAJC24 exhibited upregulated expression in LUAD tissue samples and predicted poor survival in LUAD patients. The upregulation of DNAJC24 expression promoted proliferation and invasion of LUAD cells in A549 and NCI-H1299 cell lines. Further studies revealed that DNAJC24 could regulate the PI3K/AKT signaling pathway by affecting AKT phosphorylation. In addition, a series of experiments such as Co-IP and mass spectrometry confirmed that DNAJC24 could directly interact with PCNA and promoted the malignant phenotypic transformation of LUAD. In conclusion, our results suggested that DNAJC24 played an important role in the progression of LUAD and may serve as a specific prognostic biomarker for LUAD patients. The DNAJC24/PCNA/AKT axis may be a potential target for future individualized and precise treatment of LUAD patients.


Subject(s)
Cell Proliferation , HSP40 Heat-Shock Proteins , Proliferating Cell Nuclear Antigen , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Phosphorylation , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/genetics , Male , Cell Line, Tumor , Female , Mice, Nude , Gene Expression Regulation, Neoplastic , Mice , Signal Transduction , Animals , Disease Progression , Mice, Inbred BALB C , Middle Aged , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics
12.
Nanomicro Lett ; 16(1): 196, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753068

ABSTRACT

Phase change materials (PCMs) offer a promising solution to address the challenges posed by intermittency and fluctuations in solar thermal utilization. However, for organic solid-liquid PCMs, issues such as leakage, low thermal conductivity, lack of efficient solar-thermal media, and flammability have constrained their broad applications. Herein, we present an innovative class of versatile composite phase change materials (CPCMs) developed through a facile and environmentally friendly synthesis approach, leveraging the inherent anisotropy and unidirectional porosity of wood aerogel (nanowood) to support polyethylene glycol (PEG). The wood modification process involves the incorporation of phytic acid (PA) and MXene hybrid structure through an evaporation-induced assembly method, which could impart non-leaking PEG filling while concurrently facilitating thermal conduction, light absorption, and flame-retardant. Consequently, the as-prepared wood-based CPCMs showcase enhanced thermal conductivity (0.82 W m-1 K-1, about 4.6 times than PEG) as well as high latent heat of 135.5 kJ kg-1 (91.5% encapsulation) with thermal durability and stability throughout at least 200 heating and cooling cycles, featuring dramatic solar-thermal conversion efficiency up to 98.58%. In addition, with the synergistic effect of phytic acid and MXene, the flame-retardant performance of the CPCMs has been significantly enhanced, showing a self-extinguishing behavior. Moreover, the excellent electromagnetic shielding of 44.45 dB was endowed to the CPCMs, relieving contemporary health hazards associated with electromagnetic waves. Overall, we capitalize on the exquisite wood cell structure with unidirectional transport inherent in the development of multifunctional CPCMs, showcasing the operational principle through a proof-of-concept prototype system.

13.
Schizophr Bull ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38754993

ABSTRACT

BACKGROUND AND HYPOTHESIS: Schizophrenia (SZ) is a prevalent mental disorder that imposes significant health burdens. Diagnostic accuracy remains challenging due to clinical subjectivity. To address this issue, we explore magnetic resonance imaging (MRI) as a tool to enhance SZ diagnosis and provide objective references and biomarkers. Using deep learning with graph convolution, we represent MRI data as graphs, aligning with brain structure, and improving feature extraction, and classification. Integration of multiple modalities is expected to enhance classification. STUDY DESIGN: Our study enrolled 683 SZ patients and 606 healthy controls from 7 hospitals, collecting structural MRI and functional MRI data. Both data types were represented as graphs, processed by 2 graph attention networks, and fused for classification. Grad-CAM with graph convolution ensured interpretability, and partial least squares analyzed gene expression in brain regions. STUDY RESULTS: Our method excelled in the classification task, achieving 83.32% accuracy, 83.41% sensitivity, and 83.20% specificity in 10-fold cross-validation, surpassing traditional methods. And our multimodal approach outperformed unimodal methods. Grad-CAM identified potential brain biomarkers consistent with gene analysis and prior research. CONCLUSIONS: Our study demonstrates the effectiveness of deep learning with graph attention networks, surpassing previous SZ diagnostic methods. Multimodal MRI's superiority over unimodal MRI confirms our initial hypothesis. Identifying potential brain biomarkers alongside gene biomarkers holds promise for advancing objective SZ diagnosis and research in SZ.

14.
Environ Pollut ; 351: 124048, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38714230

ABSTRACT

Sulfate-reducing bacteria (SRB) play pivotal roles in the biotransformation of mercury (Hg). However, unrevealed global responses of SRB to Hg have restricted our understanding of details of Hg biotransformation processes. The absence of protein-protein interaction (PPI) network under Hg stimuli has been a bottleneck of proteomic analysis for molecular mechanisms of Hg transformation. This study constructed the first comprehensive PPI network of SRB in response to Hg, encompassing 67 connected nodes, 26 independent nodes, and 121 edges, covering 93% of differentially expressed proteins from both previous studies and this study. The network suggested that proteomic changes of SRB in response to Hg occurred globally, including microbial metabolism in diverse environments, carbon metabolism, nucleic acid metabolism and translation, nucleic acid repair, transport systems, nitrogen metabolism, and methyltransferase activity, partial of which could cover the known knowledge. Antibiotic resistance was the original response revealed by this network, providing insights into of Hg biotransformation mechanisms. This study firstly provided the foundational network for a comprehensive understanding of SRB's responses to Hg, convenient for exploration of potential targets for Hg biotransformation. Furthermore, the network indicated that Hg enhances the metabolic activities and modification pathways of SRB to maintain cellular activities, shedding light on the influences of Hg on the carbon, nitrogen, and sulfur cycles at the cellular level.

15.
Insights Imaging ; 15(1): 120, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38763975

ABSTRACT

OBJECTIVES: To investigate the utility of deep learning (DL) automated segmentation-based MRI radiomic features and clinical-radiological characteristics in predicting early recurrence after curative resection of single hepatocellular carcinoma (HCC). METHODS: This single-center, retrospective study included consecutive patients with surgically proven HCC who underwent contrast-enhanced MRI before curative hepatectomy from December 2009 to December 2021. Using 3D U-net-based DL algorithms, automated segmentation of the liver and HCC was performed on six MRI sequences. Radiomic features were extracted from the tumor, tumor border extensions (5 mm, 10 mm, and 20 mm), and the liver. A hybrid model incorporating the optimal radiomic signature and preoperative clinical-radiological characteristics was constructed via Cox regression analyses for early recurrence. Model discrimination was characterized with C-index and time-dependent area under the receiver operating curve (tdAUC) and compared with the widely-adopted BCLC and CNLC staging systems. RESULTS: Four hundred and thirty-four patients (median age, 52.0 years; 376 men) were included. Among all radiomic signatures, HCC with 5 mm tumor border extension and liver showed the optimal predictive performance (training set C-index, 0.696). By incorporating this radiomic signature, rim arterial phase hyperenhancement (APHE), and incomplete tumor "capsule," a hybrid model demonstrated a validation set C-index of 0.706 and superior 2-year tdAUC (0.743) than both the BCLC (0.550; p < 0.001) and CNLC (0.635; p = 0.032) systems. This model stratified patients into two prognostically distinct risk strata (both datasets p < 0.001). CONCLUSION: A preoperative imaging model incorporating the DL automated segmentation-based radiomic signature with rim APHE and incomplete tumor "capsule" accurately predicted early postsurgical recurrence of a single HCC. CRITICAL RELEVANCE STATEMENT: The DL automated segmentation-based MRI radiomic model with rim APHE and incomplete tumor "capsule" hold the potential to facilitate individualized risk estimation of postsurgical early recurrence in a single HCC. KEY POINTS: A hybrid model integrating MRI radiomic signature was constructed for early recurrence prediction of HCC. The hybrid model demonstrated superior 2-year AUC than the BCLC and CNLC systems. The model categorized the low-risk HCC group carried longer RFS.

16.
World J Gastrointest Surg ; 16(3): 658-669, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38577089

ABSTRACT

Gastric peroral endoscopic myotomy (G-POME) is an emerging minimally invasive endoscopic technique involving the establishment of a submucosal tunnel around the pyloric sphincter. In 2013, Khashab et al used G-POME for the first time in the treatment of gastroparesis with enhanced therapeutic efficacy, providing a new direction for the treatment of gastroparesis. With the recent and rapid development of G-POME therapy technology, progress has been made in the treatment of gastroparesis and other upper digestive tract diseases, such as congenital hypertrophic pyloric stenosis and gastric sleeve stricture, with G-POME. This article reviews the research progress and future prospects of G-POME for the treatment of upper digestive tract gastrointestinal diseases.

17.
Gynecol Oncol Rep ; 52: 101375, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38571565

ABSTRACT

BACKGROUND: Twin pregnancies consisting of a complete hydatidiform mole and a coexistent fetus (CMCF) are rare and associated with a high rate of maternal-fetal morbidity and mortality. Management of these pregnancies remains controversial and increasingly challenging following the Dobbs versus Jackson Women's Health decision given the viability of the coexisting twin fetus. CASE: This case looks at the diagnosis, management, and maternal-fetal outcomes of a viable fetus coexisting molar pregnancy at a large academic center in an abortion-restricted state. CONCLUSION: CMCF pregnancies are associated with a high risk of morbidity and mortality and are increasingly difficult to manage following the Dobbs decision. Testing platforms, which identify genetic abnormalities in the first trimester, are increasingly important as access to abortion care in the United States is restricted.

18.
Sci Rep ; 14(1): 8843, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632292

ABSTRACT

The primary goal of this study is to develop a wearable system for providing CNC machine operators with visual and tactile perception of triaxial cutting forces, thereby assisting operators in industrial environments to enhance work efficiency and prevent mechanical failures. To achieve this goal, we successfully integrated a virtual machining tool simulator with the remote-control wearable system (RCWS). Using the 'King Path' milling parameters, we employed the simulation software developed by the AIM-HI team to calculate static and dynamic cutting forces, converting this data into vibrational commands for the RCWS to generate corresponding tactile feedback. Furthermore, we conducted extensive experiments, testing various data conversion methods, including three sampling techniques and two data compression strategies, aiming to provide accurate tactile feedback related to cutting forces under different operating conditions.

19.
Br J Cancer ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594370

ABSTRACT

BACKGROUND: Although DHFR gene amplification has long been known as a major mechanism for methotrexate (MTX) resistance in cancer, the early changes and detailed development of the resistance are not yet fully understood. METHODS: We performed genomic, transcriptional and proteomic analyses of human colon cancer cells with sequentially increasing levels of MTX-resistance. RESULTS: The genomic amplification evolved in three phases (pre-amplification, homogenously staining region (HSR) and extrachromosomal DNA (ecDNA)). We confirm that genomic amplification and increased expression of DHFR, with formation of HSRs and especially ecDNAs, is the major driver of resistance. However, DHFR did not play a detectable role in the early phase. In the late phase (ecDNA), increase in FAM151B protein level may also have an important role by decreasing sensitivity to MTX. In addition, although MSH3 and ZFYVE16 may be subject to different posttranscriptional regulations and therefore protein expressions are decreased in ecDNA stages compared to HSR stages, they still play important roles in MTX resistance. CONCLUSION: The study provides a detailed evolutionary trajectory of MTX-resistance and identifies new targets, especially ecDNAs, which could help to prevent drug resistance. It also presents a proof-of-principal approach which could be applied to other cancer drug resistance studies.

20.
Lancet Infect Dis ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38614117

ABSTRACT

BACKGROUND: The Oka varicella vaccine strain remains neurovirulent and can establish lifelong latent infection, raising safety concerns about vaccine-related herpes zoster. In this study, we aimed to evaluate the immunogenicity and safety of a skin-attenuated and neuro-attenuated varicella vaccine candidate (v7D vaccine). METHODS: We did this randomised, double-blind, controlled, phase 2a clinical trial in Jiangsu, China. Healthy children aged 3-12 years with no history of varicella infection or vaccination were enrolled and randomly assigned (1:1:1:1) to receive a single subcutaneous injection of the v7D vaccine at 3·3 log10 plaque forming units (PFU; low-dose v7D group), 3·9 log10 PFU (medium-dose v7D group), and 4·2 log10 PFU (high-dose v7D group), or the positive control varicella vaccine (vOka vaccine group). All the participants, laboratory personnel, and investigators other than the vaccine preparation and management staff were masked to the vaccine allocation. The primary outcome was assessment of the geometric mean titres (GMTs) and seroconversion rates of anti-varicella zoster virus immunoglobulin G (IgG) induced by different dose groups of v7D vaccine at 0, 42, 60, and 90 days after vaccination in the per-protocol set for humoral immune response analysis. Safety was a secondary outcome, focusing on adverse events within 42 days post-vaccination, and serious adverse events within 6 months after vaccination. This study was registered on Chinese Clinical Trial Registry, ChiCTR2000034434. FINDINGS: On Aug 18-21, 2020, 842 eligible volunteers were enrolled and randomly assigned treatment. After three participants withdrew, 839 received a low dose (n=211), middle dose (n=210), or high dose (n=210) of v7D vaccine, or the vOka vaccine (n=208). In the per-protocol set for humoral immune response analysis, the anti-varicella zoster virus IgG antibody response was highest at day 90. At day 90, the seroconversion rates of the low-dose, medium-dose, and high-dose groups of v7D vaccine and the positive control vOka vaccine group were 100·0% (95% CI 95·8-100·0; 87 of 87 participants), 98·9% (93·8-100·0; 87 of 88 participants), 97·8% (92·4-99·7; 91 of 93 participants), and 96·4% (89·8-99·2; 80 of 83 participants), respectively; the GMTs corresponded to values of 30·8 (95% CI 26·2-36·0), 31·3 (26·7-36·6), 28·2 (23·9-33·2), and 38·5 (31·7-46·7). The v7D vaccine, at low dose and medium dose, elicited a humoral immune response similar to that of the vOka vaccine. However, the high-dose v7D vaccine induced a marginally lower GMT compared with the vOka vaccine at day 90 (p=0·027). In the per-protocol set, the three dose groups of the v7D vaccine induced a similar humoral immune response at each timepoint, with no statistically significant differences. The incidence of adverse reactions in the low-dose, medium-dose, and high-dose groups of v7D vaccine was significantly lower than that in the vOka vaccine group (17% [35 of 211 participants], 20% [41 of 210 participants], and 13% [27 of 210 participants] vs 24% [50 of 208 participants], respectively; p=0·025), especially local adverse reactions (10% [22 of 211 participants], 14% [30 of 210 participants] and 9% [18 of 210 participants] vs 18% [38 of 208 participants], respectively; p=0·016). None of the serious adverse events were vaccine related. INTERPRETATION: The three dose groups of the candidate v7D vaccine exhibit similar humoral immunogenicity to the vOka vaccine and are well tolerated. These findings encourage further investigations on two-dose vaccination schedules, efficacy, and the potential safety benefit of v7D vaccine in the future. FUNDING: The National Natural Science Foundation of China, CAMS Innovation Fund for Medical Sciences, the Fundamental Research Funds for the Central Universities, and Beijing Wantai. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.

SELECTION OF CITATIONS
SEARCH DETAIL
...