Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2022: 4303586, 2022.
Article in English | MEDLINE | ID: mdl-36567910

ABSTRACT

In recent years, extensive research has been focused on the field of single cell analysis. The isolation of single cells is the first step in this type of research. However, the techniques used for direct isolation and acquisition of single adherent cells are limited. Here, we present a method of obtaining selected single adherent cells using a separation device. Compared with other single cell isolation methods, this method has the advantages of simple operation, low cost, minimal cell damage, and preservation of cell morphology. Our methodology is, therefore, suitable for the collection of selected single adherent cells.


Subject(s)
Single-Cell Analysis , Cell Adhesion , Single-Cell Analysis/methods , Cell Separation/methods
2.
BMC Musculoskelet Disord ; 23(1): 462, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35578221

ABSTRACT

BACKGROUND: Conservative treatment is the recommended first-line treatment for degenerative disc diseases. Traction therapy has historically been one of the most common clinical methods to address this, but the clinical effect remains controversial. METHODS: Forty-two six-month-old male Sprague-Dawley rats were randomly divided into six groups: the model group (Group A, four coccyx vertebrae (Co7-Co10) were fixed with customized external fixators, and the vertebral disc degeneration model was constructed by axial compression of the target segment Co8 - Co9 for 4 weeks), the experimental control group (Group B, after successful modeling, the external fixation device was removed and self-rehabilitation was performed) and four intervention groups (Groups C to F): Groups C and E: Co8 - Co9 vertebrae compressed for 4 weeks followed by two or 4 weeks of high tension traction (HTT), respectively, and Groups D and F: vertebrae compressed for 4 weeks followed by two or 4 weeks of low-tension traction (LTT), respectively. Imaging tests (X-ray and MRI) were performed to assess disc height and T2 signal intensity at each time point. After the experiment, the animals were euthanized, and the caudal vertebrae were collected for analysis of intervertebral disc histopathology, proteoglycan content, and micronanostructure of the annulus fibrosus, nucleus pulposus and bony endplate. RESULTS: Signs of tissue regeneration were apparent in all four intervention groups. After two to 4 weeks of intervention (HTT and LTT), the morphology of pores in the bony endplate, their number, and diameter had recovered significantly compared with those in Group A. The LTT group was superior to the HTT group, and the 4w in situ group was significantly superior to the 2w group. Meanwhile, the histological scores of discs, the mean fibril diameter and modulus of annulus fibrosus were significantly improved compared with the control groups, and the LTT group was superior to HTT group. CONCLUSIONS: Low-tension traction better promotes active reconstruction of bony endplates and improves the elastic modulus and micro/nanostructure of the disc. Thus, it further promotes the regeneration and repair of intervertebral discs.


Subject(s)
Annulus Fibrosus , Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Animals , Annulus Fibrosus/diagnostic imaging , Annulus Fibrosus/surgery , Disease Models, Animal , Humans , Intervertebral Disc/diagnostic imaging , Intervertebral Disc/pathology , Intervertebral Disc/surgery , Intervertebral Disc Degeneration/diagnostic imaging , Intervertebral Disc Degeneration/surgery , Male , Nucleus Pulposus/pathology , Rats , Rats, Sprague-Dawley
3.
Spine J ; 21(1): 160-177, 2021 01.
Article in English | MEDLINE | ID: mdl-32800896

ABSTRACT

BACKGROUND: Low-tension traction is more effective than high-tension traction in restoring the height and rehydration of a degenerated disc and to some extent the bony endplate. This might better reshape the microenvironment for disc regeneration and repair. However, the repair of the combination of endplate sclerosis, osteophyte formation, and even collapse leading to partial or nearly complete occlusion of the nutrient channel is greatly limited. PURPOSE: To evaluate the effectiveness of low-intensity extracorporeal shock wave therapy (ESWT) combined with low tension traction for regeneration and repair of moderately and severely degenerated discs; to explore the possible mechanism of action. STUDY DESIGN: Animal study of a rat model of degenerated discs. METHODS: A total of thirty-five 6-month old male Sprague-Dawley rats were randomly assigned to one of five groups (n=7, each group). In Group A (model group), caudal vertebrae were immobilized using a custom-made external device to fix four caudal vertebrae (Co7-Co10) whereas Co8-Co9 underwent 4 weeks of compression to induce moderate disc degeneration. In Group B (experimental control group), as in Group A, disc degeneration was successfully induced after which the fixed device was removed for 8 weeks of self-recovery. The remaining three groups of rats represented the intervention Groups (C-E): after successful generation of disc degeneration in Group C (com - 4w/tra - 4w) and Group D (com - 4w/ESWT), as described for group A, low-tension traction (in-situ traction) or low-energy ESWT was administered for 4 weeks (ESWT parameters: intensity: 0.15 Mpa; frequency: 1 Hz; impact: 1,000 each time; once/week, 4 times in total); Group E (com - 4w/tra - 4w/ESWT): disc degeneration as described for group A, low-tension traction combined with low-energy ESWT was conducted (ESWT parameters as Group D). After experimentation, caudal vertebrae were harvested and disc height, T2 signal intensity, disc morphology, total glycosaminoglycan (GAG) content, gene expression, structure of the Co8-Co9 bony endplates and elastic moduli of the discs were measured. RESULTS: After continuous low-tension traction, low energy ESWT intervention or combined intervention, the degenerated discs effectively recovered their height and became rehydrated. However, the response in Group D was weaker than in the other intervention groups in terms of restoration of intervertebral disc (IVD) height, whereas Group E was superior in disc rehydration. Tissue regeneration was evident in Groups C to E using different interventions. No apparent tissue regeneration was observed in the experimental control group (Group B). The histological scores of the three intervention groups (Groups C-E) were lower than those of Groups A or B (p<.0001), and the scores of Groups C and E were significantly lower than those of Group D (p<.05), but not Group C versus Group E (p>.05). Compared with the intervention groups (Groups C-E), total GAG content of the nucleus pulposus (NP) in Group B did not increase significantly (p>.05). There was also no significant difference in the total GAG content between Groups A and B (p>.05). Of the three intervention groups, the recovery of NP GAG content was greatest in Group E. The expression of collagen I and II, and aggrecan in the annulus fibrosus (AF) was up-regulated (p<.05), whereas the expression of MMP-3, MMP-13, and ADAMTS-4 was down-regulated (p<.05). Of the groups, Group E displayed the greatest degree of regulation. The trend in regulation of gene expression in the NP was essentially consistent with that of the AF, of which Group E was the greatest. In the intervention groups (Groups C-E), compared with Group A, the pore structure of the bony endplate displayed clear changes. The number of pores in the endplate in Groups C to E was significantly higher than in Group A (p<.0001), among which Group C versus Group D (p=.9724), and Group C versus Group E (p=.0116). There was no significant difference between Groups A and B (p=.5261). In addition, the pore diameter also increased, the trend essentially the same as that of pore density. There was no significant difference between the three intervention groups (p=.7213). It is worth noting that, compared with Groups A and B, peripheral pore density and size in Groups D and E of the three intervention groups recovered significantly. The elastic modulus and diameter of collagen fibers in the AF and NP varied with the type of intervention. Low tension traction combined with ESWT resulted in the greatest impact on the diameter and modulus of collagen fibers. CONCLUSIONS: Low energy ESWT combined with low tension traction provided a more stable intervertebral environment for the regeneration and repair of moderate and severe degenerative discs. Low energy ESWT promoted the regeneration of disc matrix by reducing MMP-3, MMP-13, and ADAMTS-4 resulting in inhibition of collagen degradation. Although axial traction promoted the recovery of height and rehydration of the IVD, combined with low energy ESWT, the micro-nano structure of the bony endplate underwent positive reconstruction, tension in the annulus of the AF and nuclear stress of the NP declined, and the biomechanical microenvironment required for IVD regeneration and repair was reshaped.


Subject(s)
Extracorporeal Shockwave Therapy , Intervertebral Disc Degeneration , Intervertebral Disc , Animals , Disease Models, Animal , Intervertebral Disc Degeneration/therapy , Male , Rats , Rats, Sprague-Dawley , Traction
4.
BMC Musculoskelet Disord ; 21(1): 425, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32616028

ABSTRACT

BACKGROUND: Articular cartilage has a high-weight-bearing area and a low-weight-bearing area, the macroscopic elastic moduli of the two regions are different. Chondrocytes are affected by the applied force at the microscopic level. Currently, the modulus of the two areas at the micro and nano levels is unknown, and studies on the relationship between macro-, micro- and nano-scale elastic moduli are limited. Such information may be important for further understanding of cartilage mechanics. Moreover, the surface morphology, proteoglycan content, and micro and nano structure of the two areas, which influences the mechanical properties of cartilage should be discussed. METHODS: Safranin-O/Fast Green staining was used to evaluate the surface morphology and semi-quantify proteoglycan content of porcine femoral head cartilage between the two weight-bearing areas. The unconfined compression test was used to determine the macro elastic modulus. Atomic force microscope was used to measure the micro and nano compressive elastic modulus as well as the nano structure. Scanning electron microscope was employed to evaluate the micro structure. RESULTS: No significant differences in the fibrillation index were observed between two areas (P = 0.5512). The Safranin-O index of the high-weight-bearing area was significantly higher than that of the low-weight-bearing area (P = 0.0387). The compressive elastic modulus of the high-weight-bearing area at the macro and micro level was significantly higher than that of the low-weight-bearing area (P = 0.0411 for macro-scale, and P = 0.0001 for micro-scale), while no statistically significant differences were observed in the elastic modulus of collagen fibrils at the nano level (P = 0.8544). The density of the collagen fibers was significantly lower in the high-weight-bearing area (P = 0.0177). No significant differences were observed in the structure and diameter of the collagen fibers between the two areas (P = 0.7361). CONCLUSIONS: A higher proteoglycan content correlated with a higher compressive elastic modulus of the high-weight-bearing area at the micro level than that of the low-weight-bearing area, which was consistent with the trend observed from the macroscopic compressive elastic modulus. The weight-bearing level was not associated with the elastic modulus of individual collagen fibers and the diameter at the nano level. The micro structure of cartilage may influence the macro- and micro-scale elastic modulus.


Subject(s)
Biomechanical Phenomena , Biophysics/methods , Cartilage, Articular/ultrastructure , Weight-Bearing/physiology , Animals , Chondrocytes/ultrastructure , Collagen/chemistry , Compressive Strength , Elastic Modulus , Proteoglycans/chemistry , Stress, Mechanical , Swine
5.
Spine J ; 20(9): 1503-1516, 2020 09.
Article in English | MEDLINE | ID: mdl-32305426

ABSTRACT

BACKGROUND: By blocking the cascade of reactions leading to intervertebral disc degeneration through immobilization-traction, a delay in intervertebral disc degeneration and its regeneration, to some extent, has been observed. However, the precise balance of regulation of the microenvironment of intervertebral disc biomechanics and coordination of the complex spatiotemporal reconstruction of the extracellular matrix have not yet been solved, and clinical results are far from successful. PURPOSE: In the present study, a mechanical degeneration model was constructed to evaluate the possibility and effectiveness of disc regeneration or repair through low-tension traction of degenerated discs so as to provide basic biomechanical information for clinical optimization of the traction device and to establish traction parameters for prevention and treatment of disc degeneration. STUDY DESIGN: A macro-, micro-, and nano-level structural analysis of degenerative discs of rat tail before and after controlled traction. METHODS: Six-month-old male Sprague-Dawley rats were randomly divided into seven groups: Group A: control group (instrumented with Kirschner [K]-wires only); Group B: Model group (caudal vertebrae immobilized using a custom-made external device to fix four caudal vertebrae [Co7-Co10], while Co8-Co9 vertebrae underwent 4 weeks of compression to induce disc degeneration); Group C: experimental control group (devices removed after the 4 week compression described in Group B, and recovered by themselves for 4 weeks). The remaining four groups represented intervention groups (Groups D and F: Co8-Co9 vertebrae compressed for 4 weeks followed by 2 or 4 weeks of in situ traction, respectively; Groups E and G: vertebrae compressed for 4 weeks followed by 2 or 4 weeks of excessive traction, respectively). X-ray and magnetic resonance imaging were performed at each time point to measure disc height and T2 signal intensity. At the end of the experiment, the animals were euthanized and tail vertebrae harvested for analysis of intervertebral disc histopathology, proteoglycan content, elastic modulus of fibers of the annulus fibrosus (AF) and nucleus pulposus (NP), and microstructure of the bony end plate. RESULTS: After 2 to 4 weeks of continuous traction (in situ and excessive traction), the Co8-Co9 intervertebral disc space of rats in Groups D to G increased significantly compared with Groups B and C (p < .05). In addition, signs of tissue regeneration were apparent in all four intervention groups (D-G). In addition, histologic scores of the intervention groups (D-G) were significantly lower than those in the model and experimental control groups (Groups B and C, respectively), although no significant difference was found between those four groups. Compared with the model group (Group B), total proteoglycan content of the NP in the intervention groups (D-G) increased significantly (p < .05). After 2 to 4 weeks of intervention (in situ and excessive traction), the morphology of pores in the bony end plate, their number, and the diameter had recovered significantly compared with those in Group B. The in situ traction group was superior to the excessive traction group, and 4 weeks in situ group significantly superior to the 2 weeks group. In all intervention groups, in both the inner and outer AF, mean fibril diameter decreased significantly (p < .05), although they remained larger in the excessive traction group than that in the in situ traction group. Consistent with trend in collagen fiber diameter, the outer AF was stiffer than the inner, and the modulus of the AF in each intervention group not significantly different from that of the control group (Group A) except Group C. However, within the NP, the variation in trend in diameter and modulus of collagen fibers was essentially inconsistent with that of the AF. CONCLUSIONS: Degenerated discs exhibit greater reconstruction after low tension traction. It is clear that the intervertebral disc mechanical microenvironment depends to a greater extent on low-tension traction than high-tension traction.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Animals , Disease Models, Animal , Intervertebral Disc Degeneration/therapy , Male , Rats , Rats, Sprague-Dawley , Traction
6.
Micron ; 130: 102824, 2020 03.
Article in English | MEDLINE | ID: mdl-31927410

ABSTRACT

Immobilization can lead to intervertebral disc degeneration. The biomechanical characteristics of such discs have not so far been investigated at the micro- or nanoscale, the level at which cells sense and respond to the surrounding environment. This study aimed to characterize changes in the elastic modulus of the collagen fibrils in the nucleus pulposus at the nanoscale and correlate this with micro-biomechanical properties of the nucleus pulposus after immobilization, in addition to observation of tissue histology and its gene expressions. An immobilization system was used on the rat tail with an external fixation device. The elastic modulus was measured using both nano and micro probes for atomic force microscopy after 4 and 8 weeks of immobilization. Histology of the tissue was observed following hematoxylin and eosin staining. Gene expression in the annulus fibrosus tissue was quantified using real-time reverse transcription-polymerase chain reaction. The elastic modulus of the collagen fibrils in the nucleus pulposus at the nanoscale increased from 74.07 ± 17.06 MPa in the control to 90.06 ± 25.51 MPa after 8 weeks (P = 0.007), and from 33.51 ± 9.33 kPa to 43.18 ± 12.08 kPa at the microscale (P = 0.002). After immobilization for 8 weeks, a greater number of cells were observed by histology to be aggregated within the nucleus pulposus. Collagen II (P = 0.007) and aggrecan (P = 0.003) gene expression were downregulated whereas collagen I (P = 0.002), MMP-3 (P < 0.001), MMP-13 (P < 0.001) and ADAMTs-4 (P < 0.001) were upregulated. Immobilization not only influenced individual collagen fibrils at the nanoscale, but also altered the micro-biomechanics and cell response in the nucleus pulposus. These results suggest that significant changes occur in intervertebral discs at both scales after immobilization, a situation about which clinicians should be aware when immobilization has to be used clinically.


Subject(s)
Elastic Modulus , Gene Expression , Immobilization , Nucleus Pulposus/cytology , Animals , Annulus Fibrosus/physiology , Collagen/physiology , Disease Models, Animal , Extracellular Matrix , Male , Microscopy, Atomic Force , Nucleus Pulposus/physiology , Nucleus Pulposus/ultrastructure , Rats , Rats, Sprague-Dawley , Tail
7.
Spine J ; 19(7): 1242-1253, 2019 07.
Article in English | MEDLINE | ID: mdl-30710732

ABSTRACT

BACKGROUND CONTEXT: Pfirrmann grading can be used to assess intervertebral disc degeneration (IVDD). There is growing evidence that IVDD is not simply a structural disorder but also involves changes to the substructural characteristics of the disc. Whether Pfirrmann grade can accurately represent these micro-nano environmental changes remains unclear. PURPOSE: We aimed to assess the micro-nano structural characteristics of the degenerative disc to provide more specific biomechanical information than the Pfirrmann score. STUDY DESIGN: A micro- and nano-level structural analysis of degenerative discs of rat tails. METHODS: In this study, 12-week-old adult male Sprague-Dawley rats were divided randomly into five groups: control (no intervention to the intervertebral disc of the tail) and four intervention groups that all had caudal vertebrae immobilized using a custom-made external device to fix four caudal vertebrae (Co7-Co10) but with variable subsequent compression of Co8 and Co9 for 2, 4, 6, or 8 weeks. Magnetic resonance imaging detection of rat coccygeal vertebrae was conducted at each time node of the experiment, and the T2 signal intensity and disc space were evaluated. Animals were euthanized and the caudal vertebrae were harvested for further analysis. Histopathology, glycosaminoglycan (GAG) content, histologic score, end plate structure, and elastic modulus of the intervertebral discs were evaluated. RESULTS: IVDD was observed at an earlier Pfirrmann grade (Pfirrmann II) under the microscope. With an increase in Pfirrmann grade to III-V, the pore structure of the bony end plate changed significantly and the number of pores decreased gradually. Furthermore, the total GAG content of the nucleus pulposus decreased from an average of 640.33 µg GAG/ng DNA in Pfirrmann grade I to 271.33 µg GAG/ng DNA in Pfirrmann grade V (p < .0001). At the early stage of clinical degeneration of intervertebral discs (Pfirrmann grades II and III), there were significant changes in mechanical properties of the outer annulus fibrosus compared with the inner layer (p < .05). Further, the fibril diameters exhibited significant changes compared with the control group (p < .05). CONCLUSIONS: Our study found that the Pfirrmann grading system combined with intervertebral disc micro-nano structural changes more comprehensively reflected the extent of disc degeneration. These data may help improve our understanding of the pathogenesis and process of clinical disc degeneration.


Subject(s)
Annulus Fibrosus/ultrastructure , Intervertebral Disc Degeneration/pathology , Nucleus Pulposus/ultrastructure , Animals , Annulus Fibrosus/diagnostic imaging , Glycosaminoglycans/metabolism , Humans , Intervertebral Disc Degeneration/diagnostic imaging , Magnetic Resonance Imaging , Male , Nucleus Pulposus/diagnostic imaging , Nucleus Pulposus/metabolism , Rats , Rats, Sprague-Dawley
8.
Spine J ; 19(5): 920-930, 2019 05.
Article in English | MEDLINE | ID: mdl-30399448

ABSTRACT

BACKGROUND CONTEXT: Previous studies have shown the potential for intervertebral disc tissue regeneration is very limited. While in vivo and in vitro studies have shown that traction can restore disc height and internal pressure, in many clinical studies it was shown that axial mechanical traction for the treatment of low back pain is ineffective. PURPOSE: The aim of this study was to identify how the disc could be distracted, how to define the state of traction, and to further examine the feasibility of regenerating or restoring the degenerative disc by means of traction. STUDY DESIGN: A macro- and microlevel structural analysis of degenerative discs of rat tail before and after controlled immobilization-traction. METHODS: In this study, 49 6-month-old male Sprague-Dawley rats were randomly assigned to one of seven groups. Group A was the sham control group in which caudal vertebrae were instrumented with K-wires only. In Group B (model group), caudal vertebrae were immobilized using a custom-made external device to fix four caudal vertebrae (Co7-Co10) and Co8-Co9 underwent 4 weeks of compression to induce moderate disc degeneration. In Group C, vertebrae Co8-Co9 underwent 4 weeks of compression to induce moderate disc degeneration, followed by removal of the external apparatus. Rats in the other four groups (Groups D-G), Co8-Co9 underwent 4 weeks of compression to induce moderate disc degeneration followed by 2 weeks, 4 weeks, 6 weeks, and 8 weeks of distraction, respectively. Caudal vertebrae were harvested and disc height, T2 signal intensity of the discs, disc morphology, total glycosaminoglycan content of the nucleus pulposus and the structure of the Co8-Co9 end plate were evaluated. RESULTS: After 4 weeks of compression, the intervertebral height and T2 signal intensity of Co8-Co9 vertebrae of rats in Groups B to G were significantly reduced compared with Group A (sham group, all p<.0001). Histological scores of rats in Group B averaged 10.14 and the total glycosaminoglycan (GAG) of nucleus pulposus averaged 238.21µg GAG/ng DNA. The bony end plate structure showed significant changes in comparison with the control Group. After 2 weeks to 8 weeks of traction, the disc space and T2 signal intensity of Co8-Co9 vertebrae in Group E were significantly recovered compared to that of rats in Group B (p<.0001), and the intervertebral height of the Co8-Co9 in Group D, Group F, and Group G when compared with Group B (p<.0001). Meanwhile, the T2 signal intensity of Co8-Co9 in Group D, F, and G when compared with Group B (p<.001). Histological scores dropped from an average of 10.14 in Group B to 5.57 in Group E, and 5.86 in Group F (all p<.0001). Furthermore, the total GAG content of the nucleus pulposus increased from an average of 238.21µg GAG/ng DNA in Group B to 601.02µg GAG/ng DNA in Group E (p<.0001). The number of pores of end plates in rats in Groups D and E both were significantly increased when compared to that of rats in Group B (Groups D vs Groups B, p<.05; Groups E vs Groups B, p<.0001). CONCLUSIONS: A mechanical degenerative model was successfully established by using a custom-made device. We demonstrated that disc degeneration is a cascade of biochemical, mechanical, and structural changes mediated by cells in an abnormal mechanical environment. Not all levels of disc degeneration can be regenerated or repaired. Regeneration or recovery of disc degeneration requires specific conditions. Based on the immobilization-traction mode, the cascade cycle of disc degeneration is interrupted. Traction of 2 to 6 weeks is a sensitive period for regeneration of the degenerative disc. Moreover, the duration and extent of the traction loading must be moderately controllable, and beyond the limits that can lead to significant degeneration. These data may help improve our understanding of the pathogenesis of clinical disc degeneration and how to optimize the use of traction devices for possible regeneration.


Subject(s)
Intervertebral Disc Degeneration/therapy , Regeneration , Traction/methods , Animals , Glycosaminoglycans/metabolism , Intervertebral Disc/metabolism , Intervertebral Disc/pathology , Intervertebral Disc/physiology , Male , Rats , Rats, Sprague-Dawley
9.
BMC Musculoskelet Disord ; 19(1): 308, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30153821

ABSTRACT

BACKGROUND: Cervical spine fixation or immobilization has become a routine treatment for spinal fracture, dislocation, subluxation injuries, or spondylosis. The effects of immobilization of intervertebral discs of the cervical spine is unclear. The goal of this study was to evaluate the effects of long-segment in-situ immobilization of intervertebral discs of the caudal vertebra, thereby simulating human cervical spine immobilization. METHODS: Thirty-five fully grown, male Sprague-Dawley rats were used. Rats were randomly assigned to one of five groups: Group A, which served as controls, and Groups B, C, D, and E, in which the caudal vertebrae were in-situ immobilized using a custom-made external device that fixed four caudal vertebrae (Co7-Co10). After 2 weeks, 4 weeks, 6 weeks, and 8 weeks of in-situ immobilization, the caudal vertebrae were harvested, and the disc height, the T2 signal intensity of the discs, disc morphology, the gene expression of discs, and the structure and the elastic modulus of discs was measured. RESULTS: The intervertebral disc height progressively decreased, starting at the 6th week. At week 6 and week 8, disc degeneration was classified as grade III, according to the modified Pfirrmann grading system criteria. Long-segment immobilization altered the gene expression of discs. The nucleus pulposus showed a typical cell cluster phenomenon over time. The annulus fibrosus inner layer began to appear disordered with fissure formation. The elastic modulus of collagen fibrils within the nucleus pulposus was significantly decreased in rats in group E compared to rats in group A (p < 0.05). On the contrary, the elastic modulus within the annulus was significantly increased in rats in group E compared to rats in group A (p < 0.05). CONCLUSION: Long-segment in-situ immobilization caused target disc degeneration, and positively correlated with fixation time. The degeneration was not only associated with changes at the macroscale and microscale, but also indicated changes in collagen fibrils at the nanoscale. Long-segment immobilization of the spine (cervical spine) does not seem to be an innocuous strategy for the treatment of spine-related diseases and may be a predisposing factor in the development of the symptomatic spine.


Subject(s)
Immobilization/adverse effects , Intervertebral Disc Degeneration/diagnostic imaging , Intervertebral Disc/diagnostic imaging , Intervertebral Disc/ultrastructure , Animals , Immobilization/methods , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/etiology , Intervertebral Disc Degeneration/pathology , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...