Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Chemosphere ; 358: 142095, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663681

ABSTRACT

Exposure to indoor dust is of concern since dust may be contaminated by various toxic chemicals and people spend considerable time indoors. Factors impacting human exposure risks to contaminants in indoor dust may differ from those affecting the loadings of contaminants, but the dominant factors have not yet been well clarified. In this study, the occurrence, human exposure, and related influencing factors of several classes of legacy and emerging contaminants in residential dust across Beijing were investigated, including per- and polyfluoroalkyl substances (PFASs) and three types of flame retardants (FRs), i.e., organophosphate esters (OPEs), polybrominated diphenyl ethers (PBDEs), and novel halogenated FRs (NHFRs). OPEs (median: 3847 ng/g) were the most abundant group, followed by PBDEs (1046 ng/g) and NHFRs (520 ng/g). PFASs (14.3 ng/g) were one to two orders of magnitude lower than FRs. The estimated daily intakes of these contaminants were relatively higher for toddlers than other age groups, with oral ingestion being the main exposure pathway compared with dermal contact. Higher human exposure risks were found in new buildings or newly finished homes due to the elevated intake of emerging contaminants (such as OPEs). Furthermore, higher risks were also found in homes with wooden floors, which were mainly associated with higher levels of PFASs, chloroalkyl and alkyl OPEs, compared with tile floors. Citizens in the urban area also showed higher exposure risks than those in the suburban area. The quantity of household appliances and finishing styles (simple or luxurious) showed an insignificant impact on overall human exposure risks despite their significant effect on the levels of some of the dust contaminants. Results in this study are of importance in understanding human exposure to the co-existence of multiple contaminants in indoor dust.


Subject(s)
Air Pollution, Indoor , Dust , Environmental Exposure , Environmental Monitoring , Flame Retardants , Halogenated Diphenyl Ethers , Housing , Dust/analysis , Humans , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Beijing , Flame Retardants/analysis , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Halogenated Diphenyl Ethers/analysis , Child , Adult , Child, Preschool , Air Pollutants/analysis , Organophosphates/analysis , Infant , China , Adolescent
2.
FASEB J ; 38(7): e23591, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38572579

ABSTRACT

CircRNAs are abnormally expressed in various cancers and play an important role in the occurrence and development of cancers. However, their biological functions and the underlying molecular mechanisms in pancreatic cancer (PC) metastasis are incompletely understood. Differentially expressed circRNAs were identified by second-generation transcriptome sequencing in three pairs of PC tissues and adjacent tissues. The expression and prognostic significance of hsa_circ_0007919 were evaluated by qRT-PCR and Kaplan-Meier survival curves. Gain- and loss-of-function assays were conducted to detect the role of hsa_circ_0007919 in PC metastasis in vitro. A lung metastasis model and IHC experiments were conducted to confirm the effects of hsa_circ_0007919 on tumor metastasis in vivo. Mechanistically, RNA immunoprecipitation and chromatin immunoprecipitation assays were conducted to explore the interplay among hsa_circ_0007919, Sp1, and the THBS1 promoter. hsa_circ_0007919 was significantly upregulated in PC tissues and cells and was correlated with lymph node metastasis, TNM stage, and poor prognosis. Knockdown of hsa_circ_0007919 significantly suppressed the migration and invasion of PC cells in vitro and inhibited tumor metastasis in vivo. However, overexpression of hsa_circ_0007919 exerted the opposite effects. Mechanistically, hsa_circ_0007919 could recruit the transcription factor Sp1 to inhibit THBS1 transcription, thereby facilitating PC metastasis. hsa_circ_0007919 can promote the metastasis of PC by inhibiting THBS1 expression. hsa_circ_0007919 may be a potential therapeutic target in PC.


Subject(s)
MicroRNAs , Pancreatic Neoplasms , Humans , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Neoplasm Invasiveness/genetics , Pancreatic Neoplasms/genetics , RNA, Circular/genetics , RNA, Circular/metabolism
3.
BMC Surg ; 24(1): 31, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263014

ABSTRACT

BACKGROUND: Due to the great heterogeneity of gastric cancer (GC), the prognosis of patients within a stage is very different. Therefore, it is necessary to identify the high risk factors for postoperative recurrence and metastasis and take appropriate therapeutic strategies to improve the prognosis of patients. In this study, we aimed to explore the prognostic significance of preoperative and postoperative serum carcinoembryonic antigen (CEA), carbohydrate antigen 19 - 9 (CA19-9) and carbohydrate antigen 72 - 4 (CA72-4) in patients with stage I, II and III GC who underwent radical gastrectomy. METHODS: A total of 580 patients who underwent curative surgical resection and had not received neoadjuvant chemotherapy were included in this study. The relationship between clinicopathological features and recurrence was analysed. Survival analysis was performed by Kaplan-Meier curve. Univariate and multivariate Cox regression analyses were performed to determine prognostic factors in GC patients. RESULTS: Among patients with stage III GC, the recurrence free survival (RFS) and overall survival (OS) of patients with CA19-9>35 U/mL were significantly lower than those with CA19-9 ≤ 35 U/mL; CA19-9 was always a significant independent marker. CEA and CA72-4 were sometime useful to predict RFS or OS alternatively in the pre- or postoperative period. The only other independent significant factors for prognosis in our study were lymph node metastases for RFS and postoperative adjuvant chemotherapy for OS. CONCLUSION: Preoperative and postoperative CA19-9 values are independent risk factors for predicting prognosis in stage III GC after curative gastrectomy.


Subject(s)
CA-19-9 Antigen , Stomach Neoplasms , Humans , Prognosis , Carcinoembryonic Antigen , Gastrectomy
5.
Mol Cancer ; 22(1): 195, 2023 12 04.
Article in English | MEDLINE | ID: mdl-38044421

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) play important roles in the occurrence and development of cancer and chemoresistance. DNA damage repair contributes to the proliferation of cancer cells and resistance to chemotherapy-induced apoptosis. However, the role of circRNAs in the regulation of DNA damage repair needs clarification. METHODS: RNA sequencing analysis was applied to identify the differentially expressed circRNAs. qRT-PCR was conducted to confirm the expression of hsa_circ_0007919, and CCK-8, FCM, single-cell gel electrophoresis and IF assays were used to analyze the proliferation, apoptosis and gemcitabine (GEM) resistance of pancreatic ductal adenocarcinoma (PDAC) cells. Xenograft model and IHC experiments were conducted to confirm the effects of hsa_circ_0007919 on tumor growth and DNA damage in vivo. RNA sequencing and GSEA were applied to confirm the downstream genes and pathways of hsa_circ_0007919. FISH and nuclear-cytoplasmic RNA fractionation experiments were conducted to identify the cellular localization of hsa_circ_0007919. ChIRP, RIP, Co-IP, ChIP, MS-PCR and luciferase reporter assays were conducted to confirm the interaction among hsa_circ_0007919, FOXA1, TET1 and the LIG1 promoter. RESULTS: We identified a highly expressed circRNA, hsa_circ_0007919, in GEM-resistant PDAC tissues and cells. High expression of hsa_circ_0007919 correlates with poor overall survival (OS) and disease-free survival (DFS) of PDAC patients. Hsa_circ_0007919 inhibits the DNA damage, accumulation of DNA breaks and apoptosis induced by GEM in a LIG1-dependent manner to maintain cell survival. Mechanistically, hsa_circ_0007919 recruits FOXA1 and TET1 to decrease the methylation of the LIG1 promoter and increase its transcription, further promoting base excision repair, mismatch repair and nucleotide excision repair. At last, we found that GEM enhanced the binding of QKI to the introns of hsa_circ_0007919 pre-mRNA and the splicing and circularization of this pre-mRNA to generate hsa_circ_0007919. CONCLUSIONS: Hsa_circ_0007919 promotes GEM resistance by enhancing DNA damage repair in a LIG1-dependent manner to maintain cell survival. Targeting hsa_circ_0007919 and DNA damage repair pathways could be a therapeutic strategy for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , MicroRNAs , Pancreatic Neoplasms , Humans , Gemcitabine , RNA, Circular/genetics , RNA, Circular/metabolism , RNA Precursors , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , DNA Damage , MicroRNAs/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Mixed Function Oxygenases/genetics , Proto-Oncogene Proteins/genetics , Hepatocyte Nuclear Factor 3-alpha/genetics
6.
Quant Imaging Med Surg ; 13(9): 5783-5795, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37711837

ABSTRACT

Background: The use of an artificial intelligence (AI)-based diagnostic system can significantly aid in analyzing the histogram of pulmonary nodules. The aim of our study was to evaluate the value of computed tomography (CT) histogram indicators analyzed by AI in predicting the tumor invasiveness of ground-glass nodules (GGNs) and to determine the added value of contrast-enhanced CT (CECT) compared with nonenhanced CT (NECT) in this prediction. Methods: This study enrolled patients with persistent GGNs who underwent preoperative NECT and CECT scanning. AI-based histogram analysis was performed for pathologically confirmed GGNs, which was followed by screening invasiveness-related factors via univariable analysis. Multivariable logistic models were developed based on candidate CT histogram indicators measured on either NECT or CECT. Receiver operating characteristic (ROC) curve and precision-recall (PR) curve were used to evaluate the models' performance. Results: A total of 116 patients comprising 121 GGNs were included and divided into the precancerous lesion and adenocarcinoma groups based on invasiveness. In the AI-based histogram analysis, the mean CT value [NECT: odds ratio (OR) =1.009; 95% confidence interval (CI): 1.004-1.013; P<0.001] and solid component volume (NECT: OR =1.005; 95% CI: 1.000-1.010; P=0.032) were associated with the adenocarcinoma and used for multivariable logistic modeling. The area under ROC curve (AUC) and PR curve (AUPR) were not significantly different between the NECT model (AUC =0.765, 95% CI: 0.679-0.837; AUPR =0.907, 95% CI: 0.825-0.953) and the optimal CECT model (delayed phase: AUC =0.772, 95% CI: 0.687-0.843; AUPR =0.895, 95% CI: 0.812-0.944). No significantly different metrics were observed between the NECT and CECT models (precision: 0.707 vs. 0.742; P=0.616). Conclusions: The AI diagnostic system can help in the diagnosis of GGNs. The system displayed decent performance in GGN detection and alert to malignancy. Mean CT value and solid component volume were independent predictors of tumor invasiveness. CECT provided no additional improvement in diagnostic performance as compared with NECT.

7.
Int J Biol Macromol ; 244: 125451, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37331540

ABSTRACT

Exopolysaccharides (EPS) from lactic acid bacteria (LAB) as edible and safe bioproducts with health benefits have become an interesting topic. In this study, aqueous two-phase system (ATPS) was established using ethanol and (NH4)2SO4 as phase-forming substances to separate and purify LAB EPS from Lactobacillus plantarum 1.0665. The operating conditions were optimized by a single factor and response surface method (RSM). The results indicated that an effectively selective separation of LAB EPS was achieved by the ATPS consisted of 28 % (w/w) ethanol and 18 % (w/w) (NH4)2SO4 at pH 4.0. Under optimized conditions, the partition coefficient (K) and recovery rate (Y) were well matched with the predicted value of 3.83 ± 0.019 and 74.66 ± 1.05 %. The physicochemical properties of purified LAB EPS were characterized by various technologies. According to the results, LAB EPS was a complex polysaccharide with a triple helix structure mainly composed of mannose, glucose and galactose in the molar ratio of 1.00: 0.32: 0.14, and it proved that the ethanol/(NH4)2SO4 system had good selectivity for LAB EPS. In addition, LAB EPS displayed excellent antioxidant activity, antihypertension activity, anti-gout capacity and hypoglycemic activity in vitro analysis. The results suggested that LAB EPS could be a dietary supplement applied in functional foods.


Subject(s)
Lactobacillales , Lactobacillus plantarum , Ethanol/chemistry , Polysaccharides, Bacterial/pharmacology , Polysaccharides, Bacterial/chemistry , Lactobacillus plantarum/chemistry , Antioxidants/chemistry , Water/chemistry
8.
J Agric Food Chem ; 71(19): 7408-7417, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37154424

ABSTRACT

Vitamin B5, also called d-pantothenic acid, is an essential vitamin in the human body and is widely used in pharmaceuticals, nutritional supplements, food, and cosmetics. However, few studies have investigated the microbial production of d-pantothenic acid, especially in Saccharomyces cerevisiae. By employing a systematic optimization strategy, we screened seven key genes in d-pantothenic acid biosynthesis from diverse species, including bacteria, yeast, fungi, algae, plants, animals, etc., and constructed an efficient heterologous d-pantothenic acid pathway in S. cerevisiae. By adjusting the copy number of the pathway modules, knocking out the endogenous bypass gene, balancing NADPH utilization, and regulating the GAL inducible system, a high-yield d-pantothenic acid-producing strain, DPA171, which can regulate gene expression using glucose, was constructed. By optimizing fed-batch fermentation, DPA171 produced 4.1 g/L d-pantothenic acid, which is the highest titer in S. cerevisiae to date. This study provides guidance for the development of vitamin B5 microbial cell factories.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Pantothenic Acid/genetics , Pantothenic Acid/metabolism , Metabolic Engineering , Saccharomyces cerevisiae Proteins/metabolism , Fermentation
9.
Helicobacter ; 28(4): e12984, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37186092

ABSTRACT

PURPOSE: To characterize the serum metabolism in patients with Helicobacter pylori-positive and H. pylori-negative gastritis. METHODS: Clinical data and serum gastric function parameters, PGI (pepsinogen I), PGII, PGR (PGI/II), and G-17 (gastrin-17) of 117 patients with chronic gastritis were collected, including 57 H. pylori positive and 60 H. pylori negative subjects. Twenty cases in each group were randomly selected to collect intestinal mucosa specimens and serum samples. The gut microbiota profiles were generated by 16S rRNA gene sequencing, and the serum metabolites were analyzed by a targeted metabolomics approach based on liquid chromatography-mass spectrometry (LC-MS) technology. RESULTS: Altered expression of 20 metabolites, including isovaleric acid, was detected in patients with HPAG. Some taxa of Bacteroides, Fusobacterium, and Prevotella in the gut microbiota showed significant correlations with differentially expressed metabolites between H. pylori positive and H. pylori negative individuals. As a result, an H. pylori-gut microbiota-metabolism (HGM) axis was proposed. CONCLUSION: Helicobacter pylori infection may influence the progression of mucosal diseases and the emergence of other complications in the host by altering the gut microbiota, and thus affecting the host serum metabolism.


Subject(s)
Gastritis , Gastrointestinal Microbiome , Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter Infections/microbiology , RNA, Ribosomal, 16S/genetics , Gastritis/microbiology , Gastric Mucosa/microbiology , Inflammation
10.
Molecules ; 28(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37110618

ABSTRACT

The development of intelligent indicator film that can detect changes in food quality is a new trend in the food packaging field. The WPNFs-PU-ACN/Gly film was prepared based on whey protein isolate nanofibers (WPNFs). Anthocyanin (ACN) and glycerol (Gly) were used as the color indicator and the plasticizer, respectively, while pullulan (PU) was added to enhance mechanical properties of WPNFs-PU-ACN/Gly edible film. In the study, the addition of ACN improved the hydrophobicity and oxidation resistance of the indicator film; with an increase in pH, the color of the indicator film shifted from dark pink to grey, and its surface was uniform and smooth. Therefore, the WPNFs-PU-ACN/Gly edible film would be suitable for sensing the pH of salmon, which changes with deterioration, as the color change of ACN was completely consistent with fish pH. Furthermore, the color change after being exposed to grey was evaluated in conjunction with hardness, chewiness, and resilience of salmon as an indication. This shows that intelligent indicator film made of WPNFs, PU, ACN, and Gly could contribute to the development of safe food.


Subject(s)
Edible Films , Food Packaging , Animals , Seafood , Fishes , Anthocyanins/chemistry , Hydrogen-Ion Concentration
11.
BMC Plant Biol ; 22(1): 532, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36380276

ABSTRACT

BACKGROUND: Volatile components are important secondary metabolites essential to fruit aroma quality, thus, in the past decades many studies have been extensively performed in clarifying fruit aroma formation. However, aroma components and biosynthesis in the fruit of Binzi (Malus pumila × Malus asiatica), an old local species with attractive aroma remain unknown. RESULTS: We investigated two Binzi cultivars, 'Xiangbinzi' (here named high-fragrant Binzi, 'HFBZ') and 'Hulabin' (here named low-fragrant Binzi, 'LFBZ') by monitoring the variation of volatiles and their precursors by Gas Chromatography-Mass Spectrometer (GC-MS), as well as their related genes by RNA-seq during post-harvest ripening. We firstly confirmed that 'HFBZ' and 'LFBZ' fruit showed respiratory climacteric by detecting respiratory rate and ethylene emission during post-harvest; found that esters were the major aroma components in 'HFBZ' fruit, and hexyl 2-methylbutyrate was responsible for the 'fruity' note and most potent aroma component, followed by ethyl acetate, ethyl butanoate, (E)-2-hexenal, and 1-hexanol. Regarding aroma synthesis, fatty acid metabolism seemed to be more important than amino acid metabolism for aroma synthesis in 'HFBZ' fruit. Based on RNA-seq and quantitative reverse transcription PCR (RT-qPCR), LOX2a, LOX5a, ADH1, and AAT1 genes are pointed to the LOX pathway, which may play a vital role in the aroma formation of 'HFBZ' fruit. CONCLUSION: Our study firstly investigated the aroma components and related genes of Binzi fruit, and provided an insight into the fragrant nature of Malus species.


Subject(s)
Malus , Volatile Organic Compounds , Malus/genetics , Odorants/analysis , Fruit/metabolism , Esters/metabolism , Chromatography, Gas , Volatile Organic Compounds/metabolism
12.
Front Plant Sci ; 13: 1026571, 2022.
Article in English | MEDLINE | ID: mdl-36388498

ABSTRACT

A strawberry RIPK1, a leu-rich repeat receptor-like protein kinase, is previously demonstrated to be involved in fruit ripening as a positive regulator; however, its role in vegetable growth remains unknown. Here, based on our first establishment of Agrobacterium-mediated transformation of germinating seeds in diploid strawberry by FvCHLH/FvABAR, a reporter gene that functioned in chlorophyll biosynthesis, we got FvRIPK1-RNAi mutants. Downregulation of FvRIPK1 inhibited plant morphogenesis, showing curled leaves; also, this silencing significantly reduced FvABAR and FvABI1 transcripts and promoted FvABI4, FvSnRK2.2, and FvSnRK2.6 transcripts. Interestingly, the downregulation of the FvCHLH/ABAR expression could not affect FvRIPK1 transcripts but remarkably reduced FvABI1 transcripts and promoted FvABI4, FvSnRK2.2, and FvSnRK2.6 transcripts in the contrast of the non-transgenic plants to the FvCHLH/FvABAR-RNAi plants, in which chlorophyll contents were not affected but had abscisic acid (ABA) response in stomata movement and drought stress. The distinct expression level of FvABI1 and FvABI4, together with the similar expression level of FvSnRK2.2 and FvSnRK2.6 in the FvRIPK1- and FvABAR/CHLH-RNAi plants, suggested that FvRIPK1 regulated plant morphogenesis probably by ABA signaling. In addition, FvRIPK1 interacted with FvSnRK2.6 and phosphorylated each other, thus forming the FvRIPK1-FvSnRK2.6 complex. In conclusion, our results provide new insights into the molecular mechanism of FvRIPK1 in plant growth.

13.
Biofabrication ; 15(1)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36223759

ABSTRACT

Paraquat (PQ) poisoning induces pulmonary fibrosisin vivo. The pathogenesis of pulmonary fibrosis is complex, which has prevented the development of specific treatments. Pulmonary fibrosis shows several characteristics including epithelial-mesenchymal transition (EMT), fibroblast activation, and extracellular matrix (ECM) deposition. To investigate pulmonary fibrosis, we designed a biomimetic multichannel micro-lung chip to imitate thein vivointerface between the lung epithelium and the lung interstitium. In our model, A549 (lung epithelial cells) and MRC-5 (fetal lung fibroblasts) cells were used to test the efficacy of our chip-based model. Rat tail type I collagen and hyaluronic acid were used to simulate ECM and to provide a 3D microenvironment. The micro-lung chips were cultured with PQ (0, 75, 150, 300, and 400µM). The viability of A549 and MRC-5 cells significantly decreased with increasing PQ concentrations. There were significant changes in surfactant proteins C (SP-C), alpha smooth muscle actin protein (α-SMA), and vimentin protein levels during PQ-induced pulmonary fibrosis. SP-C levels were decreased in A549 cells, while those ofα-SMA and vimentin were increased in A549 cells and MRC-5 cells treated with PQ in the micro-lung chip. We also designed a reference model without interaction between the lung epithelial cells and fibroblasts. Compared to the non-contact model, co-culturing A549 and MRC-5 cells in chips induced more severe EMT in A549 cells after treatment with 75µM PQ and together defended against PQ-induced damage. Thus, our novel co-culture micro-lung chip that models the lung epithelium and interstitium may provide a new approach for studying lung fibrosis and will facilitate drug development.


Subject(s)
Paraquat , Pulmonary Fibrosis , Animals , Rats , Biomimetics , Lung/metabolism , Paraquat/adverse effects , Paraquat/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Vimentin/metabolism , A549 Cells , Humans
14.
Nat Commun ; 13(1): 5541, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36130947

ABSTRACT

Engineered metabolic pathways in microbial cell factories often have no natural organization and have challenging flux imbalances, leading to low biocatalytic efficiency. Modular polyketide synthases (PKSs) are multienzyme complexes that synthesize polyketide products via an assembly line thiotemplate mechanism. Here, we develop a strategy named mimic PKS enzyme assembly line (mPKSeal) that assembles key cascade enzymes to enhance biocatalytic efficiency and increase target production by recruiting cascade enzymes tagged with docking domains from type I cis-AT PKS. We apply this strategy to the astaxanthin biosynthetic pathway in engineered Escherichia coli for multienzyme assembly to increase astaxanthin production by 2.4-fold. The docking pairs, from the same PKSs or those from different cis-AT PKSs evidently belonging to distinct classes, are effective enzyme assembly tools for increasing astaxanthin production. This study addresses the challenge of cascade catalytic efficiency and highlights the potential for engineering enzyme assembly.


Subject(s)
Polyketide Synthases , Polyketides , Biosynthetic Pathways , Escherichia coli/genetics , Escherichia coli/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Polyketides/metabolism , Xanthophylls/metabolism
15.
Environ Pollut ; 303: 119180, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35307495

ABSTRACT

Antibiotics usage in animal production is considered a primary driver of the occurrence, supply and spread of antibiotic resistance genes (ARGs) in the environment. Pig farms and fish ponds are important breeding systems in food animal production. In this study, we compared and analyzed broad ARGs profiles, mobile genetic elements (MGEs) and bacterial communities in a representative pig farm and neighboring fish ponds around Poyang Lake, the largest freshwater lake in China. The factors influencing the distribution of ARGs were also explored. The results showed widespread detection of ARGs (from 57 to 110) among 283 targeted ARGs in the collected water samples. The differences in the number and relative abundance of ARGs observed from the pig farm and neighboring fish ponds revealed that ARG contamination was more serious on the pig farm than in the fish ponds and that the water treatment plant on the pig farm was not very effective. Based on the variance partition analysis (VPA), MGEs, bacterial communities and water quality indicators (WIs) codrive the relative abundance of ARGs. Based on network analysis, we found that total phosphorus and Tp614 were the most important WIs and MGEs affecting ARG abundance, respectively. Our findings provide fundamental data on farms in lakeside districts and provide insights into establishing standards for the discharge of aquaculture wastewater.


Subject(s)
Anti-Bacterial Agents , Ponds , Animals , Anti-Bacterial Agents/pharmacology , Bacteria , Drug Resistance, Microbial/genetics , Fishes/genetics , Genes, Bacterial , Swine
16.
Front Plant Sci ; 12: 610313, 2021.
Article in English | MEDLINE | ID: mdl-33664757

ABSTRACT

Ripening of fleshy fruits involves complex physiological, biochemical, and molecular processes that coincide with various changes of the fruit, including texture, color, flavor, and aroma. The processes of ripening are controlled by ethylene in climacteric fruits and abscisic acid (ABA) in non-climacteric fruits. Increasing evidence is also uncovering an essential role for polyamines (PAs) in fruit ripening, especially in climacteric fruits. However, until recently breakthroughs have been made in understanding PA roles in the ripening of non-climacteric fruits. In this review, we compare the mechanisms underlying PA biosynthesis, metabolism, and action during ripening in climacteric and non-climacteric fruits at the physiological and molecular levels. The PA putrescine (Put) has a role opposite to that of spermidine/spermine (Spd/Spm) in cellular metabolism. Arginine decarboxylase (ADC) is crucial to Put biosynthesis in both climacteric and non-climacteric fruits. S-adenosylmethionine decarboxylase (SAMDC) catalyzes the conversion of Put to Spd/Spm, which marks a metabolic transition that is concomitant with the onset of fruit ripening, induced by Spd in climacteric fruits and by Spm in non-climacteric fruits. Once PA catabolism is activated by polyamine oxidase (PAO), fruit ripening and senescence are facilitated by the coordination of mechanisms that involve PAs, hydrogen peroxide (H2O2), ABA, ethylene, nitric oxide (NO), and calcium ions (Ca2+). Notably, a signal derived from PAO5-mediated PA metabolism has recently been identified in strawberry, a model system for non-climacteric fruits, providing a deeper understanding of the regulatory roles played by PAs in fleshy fruit ripening.

17.
Plant Direct ; 4(5): e00217, 2020 May.
Article in English | MEDLINE | ID: mdl-32355906

ABSTRACT

Polyamines are important for non-climacteric fruit ripening according to an analysis of the model plant strawberry. However, the molecular mechanism underlying the polyamine accumulation during ripening has not been fully elucidated. In this study, an examination of our proteome data related to strawberry fruit ripening revealed a putative polyamine oxidase 5, FaPAO5, which was localized in the cytoplasm and nucleus. Additionally, FaPAO5 expression levels as well as the abundance of the encoded protein continually decreased during ripening. Inhibiting FaPAO5 expression by RNAi promoted Spd, Spm, and ABA accumulation while inhibited H2O2 production, which ultimately enhanced ripening as evidenced by the ripening-related events and corresponding gene expression changes. The opposite effects were observed in FaPAO5-overexpressing transgenic fruits. Analyses of the binding affinity and enzymatic activity of FaPAO5 with Spm, Spd, and Put uncovered a special role for FaPAO5 in the terminal catabolism of Spm and Spd, with a K d of 0.21 and 0.29 µM, respectively. Moreover, FaPAO5 expression was inhibited by ABA and promoted by Spd and Spm. Furthermore, the RNA-seq analysis of RNAi and control fruits via differentially expressed genes (DEGs) indicated the six most enriched pathways among the differentially expressed genes were related to sugar, abscisic acid, ethylene, auxin, gibberellin, and Ca2+. Among four putative PAO genes in the strawberry genome, only FaPAO5 was confirmed to influence fruit ripening. In conclusion, FaPAO5 is a negative regulator of strawberry fruit ripening and modulates Spm/Spd levels as a signaling event, in which ABA plays a central role.

18.
Helicobacter ; 24(2): e12567, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30734438

ABSTRACT

OBJECTIVE: Infection with Helicobacter pylori (H pylori), especially cytotoxin-associated gene A-positive (CagA+) strains, has been associated with various gastrointestinal and extragastric diseases. The aim of this study was to characterize H pylori-induced alterations in the gastric and tongue coating microbiota and evaluate their potential impacts on human health. DESIGN: The gastric mucosa and tongue coating specimens were collected from 80 patients with chronic gastritis, and microbiota profiles were generated by 16S rRNA gene sequencing. Samples were grouped as H pylori negative (n = 32), CagA-negative H pylori infection (n = 13), and CagA-positive H pylori infection (n=35). The comparison of bacterial relative abundance was made using a generalized linear model. Functional profiling of microbial communities was predicted with PICRUSt and BugBase. Microbial correlation networks were produced by utilizing SparCC method. RESULTS: Significant alterations of the gastric microbiota were found in the H pylori+/CagA+ samples, represented by a decrease in bacterial diversity, a reduced abundance of Roseburia, and increased abundances of Helicobacter and Haemophilus genera. At the community level, functions involved in biofilm forming, mobile element content, and facultative anaerobiosis were significantly decreased in gastric microbiome of the H pylori+ subjects. The presence of CagA gene was linked to an increased proportion of Gram-negative bacteria in the stomach, thereby contributing to an upregulation of lipopolysaccharide (LPS) biosynthesis. The number of bacterial interactions was greatly reduced in networks of both tongue coating and gastric microbiota of the H pylori+/CagA+ subject, and the cooperative bacterial interactions dominated the tongue coating microbiome. CONCLUSIONS: Infection with H pylori strains possessing CagA may increase the risk of various diseases, by upregulating LPS biosynthesis in the stomach and weakening the defense of oral microbiota against microorganisms with pathogenic potential.


Subject(s)
Gastritis/microbiology , Helicobacter Infections/microbiology , Helicobacter pylori/physiology , Microbiota , Stomach/microbiology , Tongue/microbiology , Adolescent , Adult , Aged , Antibodies, Bacterial/blood , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Biodiversity , Chronic Disease , DNA, Bacterial/genetics , Female , Helicobacter pylori/immunology , Humans , Middle Aged , RNA, Ribosomal, 16S/genetics , Risk , Sequence Analysis, DNA , Young Adult
19.
Plant Physiol ; 177(1): 339-351, 2018 05.
Article in English | MEDLINE | ID: mdl-29523717

ABSTRACT

Polyamines (PAs) participate in many plant growth and developmental processes, including fruit ripening. However, it is not clear whether PAs play a role in the ripening of strawberry (Fragaria ananassa), a model nonclimacteric plant. Here, we found that the content of the PA spermine (Spm) increased more sharply after the onset of fruit coloration than did that of the PAs putrescine (Put) or spermidine (Spd). Spm dominance in ripe fruit resulted from abundant transcripts of a strawberry S-adenosyl-l-Met decarboxylase gene (FaSAMDC), which encodes an enzyme that generates a residue needed for PA biosynthesis. Exogenous Spm and Spd promoted fruit coloration, while exogenous Put and a SAMDC inhibitor inhibited coloration. Based on transcriptome data, up- and down-regulation of FaSAMDC expression promoted and inhibited ripening, respectively, which coincided with changes in several physiological parameters and their corresponding gene transcripts, including firmness, anthocyanin content, sugar content, polyamine content, auxin (indole-3-acetic acid [IAA]) content, abscisic acid (ABA) content, and ethylene emission. Using isothermal titration calorimetry, we found that FaSAMDC also had a high enzymatic activity with a Kd of 1.7 × 10-3 m In conclusion, PAs, especially Spm, regulate strawberry fruit ripening in an ABA-dominated, IAA-participating, and ethylene-coordinated manner, and FaSAMDC plays an important role in ripening.


Subject(s)
Abscisic Acid/pharmacology , Ethylenes/pharmacology , Fragaria/growth & development , Fruit/growth & development , Indoleacetic Acids/pharmacology , Polyamines/pharmacology , Adenosylmethionine Decarboxylase/antagonists & inhibitors , Adenosylmethionine Decarboxylase/isolation & purification , Adenosylmethionine Decarboxylase/metabolism , Enzyme Inhibitors/pharmacology , Fragaria/drug effects , Fragaria/genetics , Fruit/drug effects , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Gene Silencing , Molecular Sequence Annotation , Pigmentation/drug effects , Plant Proteins/antagonists & inhibitors , Plant Proteins/metabolism , Prokaryotic Cells/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Proteins/metabolism , Signal Transduction/drug effects
20.
Plant Biotechnol J ; 16(3): 737-748, 2018 03.
Article in English | MEDLINE | ID: mdl-28851008

ABSTRACT

Potassium (K+ ), an abundant cation in plant cells, is important in fruit development and plant resistance. However, how cellular K+ is directed by potassium channels in fruit development and quality formation of strawberry (Fragaria × ananassa) is not yet fully clear. Here, a two-pore K+ (TPK) channel gene in strawberry, FaTPK1, was cloned using reverse transcription-PCR. A green fluorescent protein subcellular localization analysis showed that FaTPK1 localized in the vacuole membrane. A transcription analysis indicated that the mRNA expression level of FaTPK1 increased rapidly and was maintained at a high level in ripened fruit, which was coupled with the fruit's red colour development, suggesting that FaTPK1 is related to fruit quality formation. The down- and up-regulation of the FaTPK1 mRNA expression levels using RNA interference and overexpression, respectively, inhibited and promoted fruit ripening, respectively, as demonstrated by consistent changes in firmness and the contents of soluble sugars, anthocyanin and abscisic acid, as well as the transcript levels of ripening-regulated genes PG1 (polygalacturonase), GAL6 (beta-galactosidase), XYL2 (D-xylulose reductase), SUT1 (sucrose transporter), CHS (chalcone synthase) and CHI (chalcone flavanone isomerase). Additionally, the regulatory changes influenced fruit resistance to Botrytis cinerea. An isothermal calorimetry analysis showed that the Escherichia coli-expressed FaTPK1 recombinant protein could bind K+ with a binding constant of 2.1 × 10-3  m-1 and a dissociation constant of 476 µm. Thus, the strawberry TPK1 is a ubiquitously expressed, tonoplast-localized two-pore potassium channel that plays important roles in fruit ripening and quality formation.


Subject(s)
Fragaria/metabolism , Fruit/metabolism , Plant Proteins/metabolism , Potassium Channels/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...