Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(2): 105995, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36687314

ABSTRACT

The coronavirus nucleocapsid (N) protein is known to bind to nucleic acids and facilitate viral genome encapsulation. Here we report that the N protein can mediate RNA or DNA entering neighboring cells through ACE2-independent, receptor (STEAP2)-mediated endocytosis, and achieve gene expression. The effect is more pronounced for the N protein of wild-type SARS-CoV-2 than that of the Omicron variant and other human coronaviruses. This effect is enhanced by RANTES (CCL5), a chemokine induced by N protein, and lactate, a metabolite produced in hypoxia, to cause more damage. These findings might explain the clinical observations in SARS-CoV-2-infected cases. Moreover, the N protein-mediated function can be inhibited by N protein-specific monoclonal antibodies or p38 mitogen-activated protein kinase inhibitors. Since the N-protein-mediated nucleic acid endocytosis involves a receptor commonly expressed in many types of cells, our findings suggest that N protein may have an additional role in SARS-CoV-2 pathogenesis.

2.
Front Oncol ; 12: 883437, 2022.
Article in English | MEDLINE | ID: mdl-35719949

ABSTRACT

Background: Addition of oxaliplatin to adjuvant 5-FU has significantly improved the disease-free survival and served as the first line adjuvant chemotherapy in advanced colorectal cancer (CRC) patients. However, a fraction of patients remains refractory to oxaliplatin-based treatment. It is urgent to establish a preclinical platform to predict the responsiveness toward oxaliplatin in CRC patients as well as to improve the efficacy in the resistant patients. Methods: A living biobank of organoid lines were established from advanced CRC patients. Oxaliplatin sensitivity was assessed in patient-derived tumor organoids (PDOs) in vitro and in PDO-xenografted tumors in mice. Based on in vitro oxaliplatin IC50 values, PDOs were classified into either oxaliplatin-resistant (OR) or oxaliplatin-sensitive (OS) PDOs. The outcomes of patients undergone oxaliplatin-based treatment was followed. RNA-sequencing and bioinformatics tools were performed for molecular profiling of OR and OS PDOs. Oxaliplatin response signatures were submitted to Connectivity Map algorithm to identify perturbagens that may antagonize oxaliplatin resistance. Results: Oxaliplatin sensitivity in PDOs was shown to correlate to oxaliplatin-mediated inhibition on PDO xenograft tumors in mice, and parallelled clinical outcomes of CRC patients who received FOLFOX treatment. Molecular profiling of transcriptomes revealed oxaliplatin-resistant and -sensitive PDOs as two separate entities, each being characterized with distinct hallmarks and gene sets. Using Leave-One-Out Cross Validation algorithm and Logistic Regression model, 18 gene signatures were identified as predictive biomarkers for oxaliplatin response. Candidate drugs identified by oxaliplatin response signature-based strategies, including inhibitors targeting c-ABL and Notch pathway, DNA/RNA synthesis inhibitors, and HDAC inhibitors, were demonstrated to potently and effectively increase oxaliplatin sensitivity in the resistant PDOs. Conclusions: PDOs are useful in informing decision-making on oxaliplatin-based chemotherapy and in designing personalized chemotherapy in CRC patients.

3.
J Biomed Sci ; 28(1): 43, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34098950

ABSTRACT

BACKGROUND: Coronavirus disease 19 (COVID-19) first appeared in the city of Wuhan, in the Hubei province of China. Since its emergence, the COVID-19-causing virus, SARS-CoV-2, has been rapidly transmitted around the globe, overwhelming the medical care systems in many countries and leading to more than 3.3 million deaths. Identification of immunological epitopes on the virus would be highly useful for the development of diagnostic tools and vaccines that will be critical to limiting further spread of COVID-19. METHODS: To find disease-specific B-cell epitopes that correspond to or mimic natural epitopes, we used phage display technology to determine the targets of specific antibodies present in the sera of immune-responsive COVID-19 patients. Enzyme-linked immunosorbent assays were further applied to assess competitive antibody binding and serological detection. VaxiJen, BepiPred-2.0 and DiscoTope 2.0 were utilized for B-cell epitope prediction. PyMOL was used for protein structural analysis. RESULTS: 36 enriched peptides were identified by biopanning with antibodies from two COVID-19 patients; the peptides 4 motifs with consensus residues corresponding to two potential B-cell epitopes on SARS-CoV-2 viral proteins. The putative epitopes and hit peptides were then synthesized for validation by competitive antibody binding and serological detection. CONCLUSIONS: The identified B-cell epitopes on SARS-CoV-2 may aid investigations into COVID-19 pathogenesis and facilitate the development of epitope-based serological diagnostics and vaccines.


Subject(s)
COVID-19 , Epitopes, B-Lymphocyte , Peptide Library , SARS-CoV-2 , Viral Proteins , COVID-19/genetics , COVID-19/immunology , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Humans , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Viral Proteins/genetics , Viral Proteins/immunology
4.
J Biomed Sci ; 27(1): 2, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31898491

ABSTRACT

BACKGROUND: Serglycin (SRGN), previously recognized as an intracellular proteoglycan involved in the storage processes of secretory granules, has recently been shown to be upregulated in several solid tumors. We have previously shown that SRGN in non-small cell lung cancer (NSCLC) promotes malignant phenotypes in a CD44-dependent manner and increased expression of SRGN predicts poor prognosis of primary lung adenocarcinomas. However, the underlying mechanism remains to be defined. METHODS: Overexpression, knockdown and knockout approaches were performed to assess the role of SRGN in cell motility using wound healing and Boyden chamber migration assays. SRGN devoid of glycosaminoglycan (GAG) modification was produced by site-directed mutagenesis or chondroitinase treatment. Liquid chromatography/tandem mass spectrometry was applied for quantitative analysis of the disaccharide compositions and sulfation extent of SRGN GAGs. Western blot and co-immunoprecipitation analyses were performed to determine the expression and interaction of proteins of interest. Actin cytoskeleton organization was monitored by immunofluorescence staining. RESULTS: SRGN expressed by NSCLC cells is readily secreted to the extracellular matrix in a heavily glycosylated form attached with mainly chondroitin sulfate (CS)-GAG chains, and to a lesser extent with heparin sulfate (HS). The CS-GAG moiety serves as the structural motif for SRGN binding to tumor cell surface CD44 and promotes cell migration. SRGN devoid of CS-GAG modification fails to interact with CD44 and has lost the ability to promote cell migration. SRGN/CD44 interaction promotes focal adhesion turnover via Src-mediated paxillin phosphorylation and disassembly of paxillin/FAK adhesion complex, facilitating cell migration. In support, depletion of Src activity or removal of CS-GAGs efficiently blocks SRGN-mediated Src activation and cell migration. SRGN also promotes cell migration via inducing cytoskeleton reorganization mediated through RAC1 and CDC42 activation accompanied with increased lamellipodia and filopodia formation. CONCLUSIONS: Proteoglycan SRGN promotes NSCLC cell migration via the binding of its GAG motif to CD44. SRGN/CD44 interaction induces Rho-family GTPase-mediated cytoskeleton reorganization and facilitates Src-mediated focal adhesion turnover, leading to increased cell migration. These findings suggest that targeting specific glycans in tumor microenvironment that serve as ligands for oncogenic pathways may be a potential strategy for cancer therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Glycosaminoglycans/genetics , Hyaluronan Receptors/genetics , Proteoglycans/genetics , Vesicular Transport Proteins/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Adhesion/genetics , Cell Line, Tumor , Cell Movement/genetics , Focal Adhesion Kinase 1/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Knockdown Techniques , Glycosaminoglycans/metabolism , Humans , Hyaluronan Receptors/metabolism , Mutagenesis, Site-Directed , Protein Binding/genetics , Proteoglycans/metabolism , Vesicular Transport Proteins/metabolism , rho GTP-Binding Proteins/genetics , src-Family Kinases/genetics
5.
Mol Cancer Res ; 18(3): 375-389, 2020 03.
Article in English | MEDLINE | ID: mdl-31792079

ABSTRACT

Chronic hepatitis B virus (HBV) infection is a major risk factor for the development of hepatocellular carcinoma (HCC), which represents one of the most common cancers worldwide. Recent studies suggest that HBV's protein X (HBx) plays a crucial role in HCC development and progression. Earlier, genome-wide analysis identified that the receptor for hyaluronan-mediated motility (RHAMM) represents a putative oncogene and is overexpressed in many human cancers, including HCC. However, the mechanism underlying RHAMM upregulation and its role in tumorigenesis remain unclear. Here, we show that ectopic expression of HBx activates the PI3K/Akt/Oct-1 pathway and upregulates RHAMM expression in HCC cells. HBx overexpression leads to dissociation of C/EBPß from the RHAMM gene promoter, thereby inducing RHAMM upregulation. RHAMM knockdown attenuates HBx-induced cell migration and invasion in vitro. In mice, HBx promotes cancer cell colonization via RHAMM upregulation, resulting in enhanced metastasis. Analysis of gene expression datasets reveals that RHAMM mRNA level is upregulated in patients with HCC with poor prognosis. IMPLICATIONS: These results indicate that RHAMM expression is upregulated by HBx, a process that depends on the inhibition of C/EBPß activity and activation of the PI3K/Akt/Oct-1 pathway. These results have several implications for the treatment of HBV-positive HCC involving upregulation of RHAMM and cancer metastasis. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/18/3/375/F1.large.jpg.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Trans-Activators/genetics , Viral Regulatory and Accessory Proteins/genetics , Animals , Cell Movement , Humans , Male , Mice , Signal Transduction , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...