Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 479
Filter
1.
J Agric Food Chem ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943677

ABSTRACT

Fusarium head blight caused by Fusarium graminearum is a devastating disease in wheat that seriously endangers food security and human health. Previous studies have found that the secondary metabolite phenazine-1-carboxamide produced by biocontrol bacteria inhibited F. graminearum by binding to and inhibiting the activity of histone acetyltransferase Gcn5 (FgGcn5). However, the detailed mechanism of this inhibition remains unknown. Our structural and biochemical studies revealed that phenazine-1-carboxamide (PCN) binds to the histone acetyltransferase (HAT) domain of FgGcn5 at its cosubstrate acetyl-CoA binding site, thus competitively inhibiting the histone acetylation function of the enzyme. Alanine substitution of the residues in the binding site shared by PCN and acetyl-CoA not only decreased the histone acetylation level of the enzyme but also dramatically impacted the development, mycotoxin synthesis, and virulence of the strain. Taken together, our study elucidated a competitive inhibition mechanism of Fusarium fungus by PCN and provided a structural template for designing more potent phenazine-based fungicides.

2.
Arch Dermatol Res ; 316(6): 328, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824251

ABSTRACT

Observational studies have revealed associations between various dietary factors and skin conditions. However, the causal relationship between diet and skin condition is still unknown. Data on 17 dietary factors were obtained from the UK Biobank. Data on four skin conditions were derived from the UK Biobank and another large-scale GWAS study. Genetic predictions suggested that the intake of oily fish was associated with a lower risk of skin aging (OR: 0.962, P = 0.036) and skin pigmentation (OR: 0.973, P = 0.033); Tea intake was associated with a lower risk of skin pigmentation (OR: 0.972, P = 0.024); Salad/raw vegetables intake was associated with a lower risk of keratinocyte skin cancer (OR: 0.952, P = 0.007). Coffee intake was associated with increased risk of skin aging (OR: 1.040, P = 0.028); Pork intake was associated with increased risk of skin aging (OR: 1.134, P = 0.020); Beef intake was associated with increased risk of cutaneous melanoma (OR: 1.013, P = 0.016); Champagne plus white wine intake was associated with increased risk of cutaneous melanoma (OR: 1.033, P = 0.004); Bread intake was associated with increased risk of keratinocyte skin cancer (OR: 1.026, P = 0.013). Our study results indicate causal relationships between genetically predicted intake of oily fish, tea, salad/raw vegetables, coffee, pork, beef, champagne plus white wine, and bread and skin conditions.


Subject(s)
Diet , Mendelian Randomization Analysis , Skin Neoplasms , Humans , Diet/adverse effects , Diet/statistics & numerical data , Skin Neoplasms/genetics , Skin Neoplasms/epidemiology , Skin Neoplasms/etiology , Skin Aging/genetics , Skin Pigmentation/genetics , Coffee/adverse effects , Genome-Wide Association Study , United Kingdom/epidemiology , Tea/adverse effects , Risk Factors
3.
J Hazard Mater ; 475: 134828, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38876015

ABSTRACT

The prediction of ecological toxicity plays an increasingly important role in modern society. However, the existing models often suffer from poor performance and limited predictive capabilities. In this study, we propose a novel approach for ecological toxicity assessment based on pre-trained models. By leveraging pre-training techniques and graph neural network models, we establish a highperformance predictive model. Furthermore, we incorporate a variational autoencoder to optimize the model, enabling simultaneous discrimination of toxicity to bees and molecular degradability. Additionally, despite the low similarity between the endogenous hormones in bees and the compounds in our dataset, our model confidently predicts that these hormones are non-toxic to bees, which further strengthens the credibility and accuracy of our model. We also discovered the negative correlation between the degradation and bee toxicity of compounds. In summary, this study presents an ecological toxicity assessment model with outstanding performance. The proposed model accurately predicts the toxicity of chemicals to bees and their degradability capabilities, offering valuable technical support to relevant fields.


Subject(s)
Neural Networks, Computer , Bees/drug effects , Animals , Ecotoxicology , Toxicity Tests
4.
Water Res ; 259: 121855, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38838482

ABSTRACT

Plasmid-mediated conjugative transfer facilitates the dissemination of antibiotic resistance, yet the comprehensive regulatory mechanisms governing this process remain elusive. Herein, we established pure bacteria and activated sludge conjugation system to investigate the regulatory mechanisms of conjugative transfer, leveraging metformin as an exogenous agent. Transcriptomic analysis unveiled that substantial upregulation of genes associated with the two-component system (e.g., AcrB/AcrA, EnvZ/Omp, and CpxA/CpxR) upon exposure to metformin. Furthermore, downstream regulators of the two-component system, including reactive oxygen species (ROS), cytoplasmic membrane permeability, and adenosine triphosphate (ATP) production, were enhanced by 1.7, 1.4 and 1.1 times, respectively, compared to the control group under 0.1 mg/L metformin exposure. Moreover, flow sorting and high-throughput sequencing revealed increased microbial community diversity among transconjugants in activated sludge systems. Notably, the antibacterial potential of human pathogenic bacteria (e.g., Bacteroides, Escherichia-Shigella, and Lactobacillus) was augmented, posing a potential threat to human health. Our findings shed light on the spread of antibiotic resistance bacteria and assess the ecological risks associated with plasmid-mediated conjugative transfer in wastewater treatment systems.


Subject(s)
Plasmids , Plasmids/genetics , Sewage/microbiology , Conjugation, Genetic , Bacteria/genetics , Anti-Bacterial Agents/pharmacology
6.
Microb Genom ; 10(5)2024 May.
Article in English | MEDLINE | ID: mdl-38700925

ABSTRACT

Paramyxoviruses are a group of single-stranded, negative-sense RNA viruses, some of which are responsible for acute human disease, including parainfluenza virus, measles virus, Nipah virus and Hendra virus. In recent years, a large number of novel paramyxoviruses, particularly members of the genus Jeilongvirus, have been discovered in wild mammals, suggesting that the diversity of paramyxoviruses may be underestimated. Here we used hemi-nested reverse transcription PCR to obtain 190 paramyxovirus sequences from 969 small mammals in Hubei Province, Central China. These newly identified paramyxoviruses were classified into four clades: genera Jeilongvirus, Morbillivirus, Henipavirus and Narmovirus, with most of them belonging to the genus Jeilongvirus. Using Illumina sequencing and Sanger sequencing, we successfully recovered six near-full-length genomes with different genomic organizations, revealing the more complex genome content of paramyxoviruses. Co-divergence analysis of jeilongviruses and their known hosts indicates that host-switching occurred more frequently in the evolutionary histories of the genus Jeilongvirus. Together, our findings demonstrate the high prevalence of paramyxoviruses in small mammals, especially jeilongviruses, and highlight the diversity of paramyxoviruses and their genome content, as well as the evolution of jeilongviruses.


Subject(s)
Paramyxoviridae Infections , Paramyxovirinae , Paramyxovirinae/genetics , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/veterinary , Mammals , China , Phylogeny , Genome, Viral , Host Specificity
7.
J Thorac Dis ; 16(4): 2528-2538, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38738248

ABSTRACT

Background: The mortality rate of coronary artery disease ranks first in developed countries, and coronary revascularization therapy is an important cornerstone of its treatment. The postoperative pulmonary complications (PPCs) in patients receiving one-stop hybrid coronary revascularization (HCR) aggravate the dysfunction of multiple organs such as the heart and lungs, therefore increasing mortality. However, the risk factors are still unclear. The objective of this study was to explore the risk factors of PPCs after HCR surgery. Methods: In this study, the perioperative data of 311 patients undergoing HCR surgery were reviewed. All patients were divided into two groups according to whether the PPCs occurred. The baseline information and surgery-related indicators in preoperative laboratory examination, intraoperative fluid management, and anesthesia management were compared between the two groups. Results: Advanced age [odds ratio (OR): 1.065, 95% confidence interval (CI): 1.030-1.101, P<0.001], high body mass index (BMI; OR: 1.113, 95% CI: 1.011-1.225, P=0.02), history of percutaneous coronary intervention (PCI) surgery (OR: 2.831, 95% CI: 1.388-5.775, P=0.004), one-lung volume ventilation (OR: 3.804, 95% CI: 1.923-7.526, P<0.001), inhalation of high concentration oxygen (OR: 3.666, 95% CI: 1.719-7.815, P=0.001), the application of positive end-expiratory pressure (PEEP; OR: 2.567, 95% CI: 1.338-4.926, P=0.005), and long one-lung ventilation time (OR: 1.015, 95% CI: 1.006-1.023, P=0.001) may be risk factors for postoperative PPCs in patients undergoing one-stop coronary revascularization surgery. Using the above seven factors to jointly predict the risk of PPCs in patients undergoing one-stop coronary revascularization surgery, the receiver operating characteristic (ROC) curve showed an area under the curve (AUC) =0.873, 95% CI: 0.835-0.911, sensitivity: 84.81%, and specificity: 75.82%; the predictive model was shown to be effective. Conclusions: Patients undergoing HCR surgery with advanced age, high BMI, a history of PCI surgery, one-lung volume ventilation, inhalation of high concentration oxygen, use of PEEP, and prolonged single lung ventilation are more prone to PPCs.

8.
J Ultrasound Med ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822195

ABSTRACT

PURPOSE: To develop a deep neural network system for the automatic segmentation and risk stratification prediction of gastrointestinal stromal tumors (GISTs). METHODS: A total of 980 ultrasound (US) images from 245 GIST patients were retrospectively collected. These images were randomly divided (6:2:2) into a training set, a validation set, and an internal test set. Additionally, 188 US images from 47 prospective GIST patients were collected to evaluate the segmentation and diagnostic performance of the model. Five deep learning-based segmentation networks, namely, UNet, FCN, DeepLabV3+, Swin Transformer, and SegNeXt, were employed, along with the ResNet 18 classification network, to select the most suitable network combination. The performance of the segmentation models was evaluated using metrics such as the intersection over union (IoU), Dice similarity coefficient (DSC), recall, and precision. The classification performance was assessed based on accuracy and the area under the receiver operating characteristic curve (AUROC). RESULTS: Among the compared models, SegNeXt-ResNet18 exhibited the best segmentation and classification performance. On the internal test set, the proposed model achieved IoU, DSC, precision, and recall values of 82.1, 90.2, 91.7, and 88.8%, respectively. The accuracy and AUC for GIST risk prediction were 87.4 and 92.0%, respectively. On the external test set, the segmentation models exhibited IoU, DSC, precision, and recall values of 81.0, 89.5, 92.8, and 86.4%, respectively. The accuracy and AUC for GIST risk prediction were 86.7 and 92.5%, respectively. CONCLUSION: This two-stage SegNeXt-ResNet18 model achieves automatic segmentation and risk stratification prediction for GISTs and demonstrates excellent segmentation and classification performance.

9.
ACS Nano ; 18(19): 12386-12400, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38699808

ABSTRACT

Current cancer vaccines face challenges due to an immunosuppressive tumor microenvironment and their limited ability to produce an effective immune response. To address the above limitations, we develop a 3-(2-spiroadamantyl)-4-methoxy-4-(3-phosphoryloxy)-phenyl-1,2-dioxetane (alkaline phosphatase substrate) and XMD8-92 (extracellular signal-regulated kinase 5 inhibitor)-codelivered copper-tetrahydroxybenzoquinone (Cu-THBQ/AX) nanosized metal-organic framework to in situ-generate therapeutic vaccination. Once inside the early endosome, the alkaline phosphatase overexpressed in the tumor cells' membrane activates the in situ type I photodynamic effect of Cu-THBQ/AX for generating •O2-, and the Cu-THBQ/AX catalyzes O2 and H2O2 to •O2- and •OH via semiquinone radical catalysis and Fenton-like reactions. This surge of ROS in early endosomes triggers caspase-3-mediated proinflammatory pyroptosis via activating phospholipase C. Meanwhile, Cu-THBQ/AX can also induce the oligomerization of dihydrolipoamide S-acetyltransferase to trigger tumor cell cuproptosis. The production of •OH could also trigger the release of XMD8-92 for effectively inhibiting the efferocytosis of macrophages to convert immunosuppressive apoptosis of cancer cells into proinflammatory secondary necrosis. The simultaneous induction of pyroptosis, cuproptosis, and secondary necrosis effectively converts the tumor microenvironment from "cold" to "hot" conditions, making it an effective antigen pool. This transformation successfully activates the antitumor immune response, inhibiting tumor growth and metastasis.


Subject(s)
Cancer Vaccines , Copper , Macrophages , Metal-Organic Frameworks , Pyroptosis , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Animals , Mice , Pyroptosis/drug effects , Macrophages/drug effects , Macrophages/metabolism , Humans , Copper/chemistry , Copper/pharmacology , Cancer Vaccines/chemistry , Tumor Microenvironment/drug effects , Nanoparticles/chemistry , Phagocytosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Mice, Inbred BALB C , Efferocytosis , Nanovaccines
10.
Methods ; 227: 78-85, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754711

ABSTRACT

Pathogenic bacteria represent a formidable threat to human health, necessitating substantial resources for prevention and treatment. With the escalating concern regarding antibiotic resistance, there is a pressing need for innovative approaches to combat these pathogens. Repurposing existing drugs offers a promising solution. Our present work hypothesizes that proteins harboring ligand-binding pockets with similar chemical environments may be able to bind the same drug. To facilitate this drug-repurposing strategy against pathogenic bacteria, we introduce an online server, PharmaRedefine. Leveraging a combination of sequence and structure alignment and protein pocket similarity analysis, this platform enables the prediction of potential targets in representative bacteria for specific FDA-approved drugs. This novel approach holds tremendous potential for drug repositioning that effectively combat infections caused by pathogenic bacteria. PharmaRedefine is freely available at http://guolab.mpu.edu.mo/pharmredefine.


Subject(s)
Anti-Bacterial Agents , Drug Repositioning , Drug Repositioning/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Bacteria/drug effects , Software , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites
11.
Nat Neurosci ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802591

ABSTRACT

Oligodendrocyte-lineage cells, including NG2 glia, undergo prominent changes in various neurodegenerative disorders. Here, we identify a neuroprotective role for NG2 glia against prion toxicity. NG2 glia were activated after prion infection in cerebellar organotypic cultured slices (COCS) and in brains of prion-inoculated mice. In both model systems, depletion of NG2 glia exacerbated prion-induced neurodegeneration and accelerated prion pathology. Loss of NG2 glia enhanced the biosynthesis of prostaglandin E2 (PGE2) by microglia, which augmented prion neurotoxicity through binding to the EP4 receptor. Pharmacological or genetic inhibition of PGE2 biosynthesis attenuated prion-induced neurodegeneration in COCS and mice, reduced the enhanced neurodegeneration in NG2-glia-depleted COCS after prion infection, and dampened the acceleration of prion disease in NG2-glia-depleted mice. These data unveil a non-cell-autonomous interaction between NG2 glia and microglia in prion disease and suggest that PGE2 signaling may represent an actionable target against prion diseases.

12.
Curr Med Imaging ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38803184

ABSTRACT

OBJECTIVE: This study aimed to develop an ultrasomics model for predicting lymph node metastasis preoperative in patients with gastric cancer (GC). METHODS: This study enrolled GC patients who underwent preoperative ultrasound examination. Manual segmentation of the region of interest (ROI) was performed by an experienced radiologist to extract radiomics features using the Pyradiomics software. The Z-score algorithm was used for feature normalization, followed by the Wilcoxon test to identify the most informative features. Linear prediction models were constructed using the least absolute shrinkage and selection operator (LASSO). The performance of the ultrasomics model was evaluated using the area under curve (AUC), sensitivity, specificity, and the corresponding 95% confidence intervals (CIs). RESULTS: A total of 464 GC patients (mean age: 60.4 years ±11.3 [SD]; 328 men [70.7%]) were analyzed, of whom 291 had lymph node metastasis. The patients were randomly assigned to either the training (n=324) or test (n=140) sets, using a 7:3 ratio. An ultrasomics model that consisted of 19 radiomics features was developed using Wilcoxon and LASSO algorithms in the training set. Our ultrasomics model showed moderate performance for lymph node metastasis prediction in both the training (AUC: 0.802, 95%CI: 0.752-0.851, P<0.001) and test sets (AUC: 0.802, 95%CI: 0.724-0.879, P<0.001). The calibration curve analysis indicated good agreement between the predicted probabilities of ultrasomics and actual lymph node metastasis status. CONCLUSION: Our study highlights the potential of a machine learning-based ultrasomics model in predicting lymph node metastasis in GC patients, offering implications for personalized therapy approaches.

13.
Talanta ; 276: 126207, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38718650

ABSTRACT

Metal-Organic Framework (MOF) based nanozymes with clear structure are beneficial for exploration of structural-performance and exhibit broad prospects in improving activity. In this study, the prepared bimetallic Fe3Ni-MOF nanozyme was superior to single metal MOF in the peroxidase-like activity. Subsequently, a derivative nanozyme (Fe3Ni-MOF-Ar) was prepared by pyrolysis using Fe3Ni-MOF as the precursor in argon atomoshere with controlled temperature. The investigated of Fe3Ni-MOF-Ar revealed that the irregular macroporous state and the presence of heterovalent FeIII/FeII sites of Fe3Ni-MOF-Ar enable the retention, exposure, and electronic structure regulation of active sites, promoting the dual mechanism (the generation of •OH and electron transfer mechanism) and significantly increasing the peroxidase-like activity. Fe3Ni-MOF-Ar exhibited a strong affinity for substrate H2O2, which is higher than horseradish peroxidase. Ascorbic acid and cysteine are typical substances of antioxidants. Fe3Ni-MOF-Ar was used for sensitive colorimetric detection of ascorbic acid and cysteine, and the detection limit was as low as 150 and 60 nM. In addition, the smartphone devices was used to detection of antioxidant equivalent ascorbic acid, with a detection range of 0.5-120 µM. Fe3Ni-MOF-Ar nanozyme is feasible for sensitive detection of saliva total antioxidant capacity.


Subject(s)
Antioxidants , Ascorbic Acid , Metal-Organic Frameworks , Saliva , Smartphone , Saliva/chemistry , Metal-Organic Frameworks/chemistry , Humans , Antioxidants/analysis , Antioxidants/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Catalytic Domain , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Peroxidase/chemistry , Peroxidase/metabolism , Cysteine/analysis , Cysteine/chemistry , Colorimetry/methods , Nickel/chemistry , Limit of Detection
14.
Plant Cell Environ ; 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644635

ABSTRACT

Crown removal revitalises sand-fixing shrubs that show declining vigour with age in drought-prone environments; however, the underlying mechanisms are poorly understood. Here, we addressed this knowledge gap by comparing the growth performance, xylem hydraulics and plant carbon economy across different plant ages (10, 21 and 33 years) and treatments (control and crown removal) using a representative sand-fixing shrub (Caragana microphylla Lam.) in northern China. We found that growth decline with plant age was accompanied by simultaneous decreases in soil moisture, plant hydraulic efficiency and photosynthetic capacity, suggesting that these interconnected changes in plant water relations and carbon economy were responsible for this decline. Following crown removal, quick resprouting, involving remobilisation of root nonstructural carbohydrate reserves, contributed to the reconstruction of an efficient hydraulic system and improved plant carbon status, but this became less effective in older shrubs. These age-dependent effects of carbon economy and hydraulics on plant growth vigour provide a mechanistic explanation for the age-related decline and revitalisation of sand-fixing shrubs. This understanding is crucial for the development of suitable management strategies for shrub plantations constructed with species having the resprouting ability and contributes to the sustainability of ecological restoration projects in water-limited sandy lands.

15.
Angew Chem Int Ed Engl ; 63(28): e202405769, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38656752

ABSTRACT

The construction of olefin-linked chiral covalent organic frameworks (COFs) with high crystallinity is highly desirable while remains great challenge due to the poor reversibility of the formation reaction for the olefin linkages during the in situ structural self-healing process. Herein, we successfully synthesized two sets of enantiomeric olefin-linked COFs. The chiral catalytic groups are uniformly distributed on the pore walls of COFs, resulting in the full exposure of catalytic sites to the reactants in asymmetric catalysis. The as-prepared (R)/(S)-CCOF8 exhibits excellent catalytic performance with exceeding 99 % enantiomeric excess in the enantioselective electrophilic amination reaction. Moreover, the heterogeneous chiral catalysts are conveniently recycled and could maintain the performance after ten catalytic cycles. Our findings expand the scope to construct stable and crystalline chiral COFs for the asymmetric catalysis.

16.
Environ Sci Pollut Res Int ; 31(20): 29763-29776, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38592631

ABSTRACT

Microorganisms are highly sensitive to toxic metal pollution and play an important role in the material cycling and energy flow of the water ecosystem. Herein, 13 sediment samples from Junchong Reservoir (Guangxi Province, China) were collected in December 2021. The spatial distribution of pollution levels for toxic metals and the effects of toxic metals on the composition, functional characteristics, and metabolism of microorganisms were investigated. The results demonstrated that the area is a proximate area to industrial zones with severity of toxic metal pollution. Their mean concentrations of As, Cu, Zn, and Pb were up to 128.79 mg/kg, 57.62 mg/kg, 594.77 mg/kg, and 97.12 mg/kg respectively. There was a strong correlation between As, Cu, Zn, and Pb, with the highest correlation coefficient reaching 0.94. As the level of toxic metal pollution increases, the diversity and abundance of microorganisms gradually decrease. Compared to those with lower pollution levels, the Shannon index in regions with higher pollution levels decreases by up to 0.373, and the Chao index decreases by up to 143.507. However, the relative abundance of Bacteroidota, Patescibacteria, and Chloroflexi increased by 23%, 20%, and 5%, respectively, indicating their higher adaptability to toxic metals. Furthermore, microbial carbon and nitrogen metabolism were also affected by the presence of toxic metals. FAPROTAX analysis demonstrated an abundant reduction of ecologically functional groups associated with carbon and nitrogen transformations under high toxic metal pollution levels. KEGG pathway analysis indicated that carbon fixation and nitrogen metabolism pathways were inhibited with increasing toxic metal concentrations. These findings would contribute to a better understanding of the effects of toxic metal pollution on sediment microbial communities and function, shedding light on the ecological consequences of toxic metal contamination.


Subject(s)
Carbon , Geologic Sediments , Nitrogen , Geologic Sediments/chemistry , China , Water Pollutants, Chemical/toxicity , Microbiota/drug effects , Environmental Monitoring , Metals, Heavy
17.
Environ Pollut ; 350: 124010, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38648964

ABSTRACT

Microenvironments, such as student dormitories, differ from general residential environments. They are characterized by small spaces, poor air circulation, high personnel densities, and electronic products, such as computers that are turned on for extended periods, leading to increased pollution concentrations. The limited space and poor air circulation reduce migration of contaminants, such as polybrominated diphenyl ethers (PBDEs), making it easier for PBDEs to accumulate. However, few studies have been conducted on small group dwellings, including student dormitory dwellings. We collected dust samples from student dormitories of a university to analyze the characteristics and traceability of PBDEs in dormitory microenvironments. The results showed that PBDE congeners were widely present in university dormitories and the order of median concentration of ∑10PBDEs was as follows: male old-fashioned dormitory (273 ng/g) > female four-person dormitory (132 ng/g) > female two-person dormitory (132 ng/g) > male two-person dormitory (96.2 ng/g) > female old-fashioned dormitory (91.6 ng/g) > male four-person apartment (51.8 ng/g). BDE-209 was the most abundant PBDE congener, followed by BDE-47, and BDE-28. PBDEs were also found in typical electrical appliances, with higher concentrations in laptops than in desktops, and higher concentrations in desktops than in idle ones. According to Spearman correlation and Principal Component Analysis (PCA), we also found that boards and wallpaper materials were common sources of contamination in the microenvironment of student dormitories, and that female dormitories had more sources of PBDE emissions. Human exposure to PBDEs in students is below the US Environmental Protection Agency reference dose. Although exposure to PBDEs generated in dormitories does not pose a significant health risk, the potential hazards of PBDEs to the reagent environment remain to be investigated.


Subject(s)
Air Pollution, Indoor , Environmental Exposure , Environmental Monitoring , Halogenated Diphenyl Ethers , Housing , Students , Halogenated Diphenyl Ethers/analysis , Humans , Female , Male , Environmental Exposure/statistics & numerical data , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Dust/analysis , Universities , Air Pollutants/analysis
18.
Molecules ; 29(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38675717

ABSTRACT

In the context of peptide drug development, glycosylation plays a pivotal role. Accordingly, L-type peptides were synthesized predicated upon the PD-1/PD-L1 blocker DPPA-1. Subsequent glycosylation resulted in the production of two distinct glycopeptides, D-glu-LPPA-1 and D-gal-LPPA-1, by using D-glucose (D-glu) and D-galactose (D-gal), respectively, during glycosylation. Both glycopeptides significantly inhibited the interaction between PD-1 and PD-L1, and the measured half maximal inhibitory concentrations (IC50s) were 75.5 µM and 101.9 µM for D-glu-LPPA-1 and D-gal-LPPA-1, respectively. Furthermore, D-gal-LPPA-1 displayed a pronounced ability to restore T-cell functionality. In an MC38 tumor-bearing mouse model, D-gal-LPPA-1 demonstrated a significant inhibitory effect. Notably, D-gal-LPPA-1 substantially augmented the abundance and functionality of CD8+ T cells in the tumor microenvironment. Additionally, in the lymph nodes and spleens, D-gal-LPPA-1 significantly increased the proportion of CD8+ T cells secreting interferon-gamma (IFN-γ). These strong findings position D-gal-LPPA-1 as a potent enhancer of the antitumor immune response in MC38 tumor-bearing mice, underscoring its potential as a formidable PD-1/PD-L1 blocking agent.


Subject(s)
B7-H1 Antigen , Programmed Cell Death 1 Receptor , Glycosylation , Animals , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Humans , Drug Design , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/chemistry , Immune Checkpoint Inhibitors/chemical synthesis , Glycopeptides/chemistry , Glycopeptides/chemical synthesis , Glycopeptides/pharmacology , Tumor Microenvironment/drug effects , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor
19.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38581420

ABSTRACT

Protein-ligand interaction prediction presents a significant challenge in drug design. Numerous machine learning and deep learning (DL) models have been developed to accurately identify docking poses of ligands and active compounds against specific targets. However, current models often suffer from inadequate accuracy or lack practical physical significance in their scoring systems. In this research paper, we introduce IGModel, a novel approach that utilizes the geometric information of protein-ligand complexes as input for predicting the root mean square deviation of docking poses and the binding strength (pKd, the negative value of the logarithm of binding affinity) within the same prediction framework. This ensures that the output scores carry intuitive meaning. We extensively evaluate the performance of IGModel on various docking power test sets, including the CASF-2016 benchmark, PDBbind-CrossDocked-Core and DISCO set, consistently achieving state-of-the-art accuracies. Furthermore, we assess IGModel's generalizability and robustness by evaluating it on unbiased test sets and sets containing target structures generated by AlphaFold2. The exceptional performance of IGModel on these sets demonstrates its efficacy. Additionally, we visualize the latent space of protein-ligand interactions encoded by IGModel and conduct interpretability analysis, providing valuable insights. This study presents a novel framework for DL-based prediction of protein-ligand interactions, contributing to the advancement of this field. The IGModel is available at GitHub repository https://github.com/zchwang/IGModel.


Subject(s)
Deep Learning , Proteins , Proteins/chemistry , Protein Binding , Ligands , Drug Design
20.
Nat Commun ; 15(1): 3200, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615014

ABSTRACT

Histone lysine crotonylation (Kcr), as a posttranslational modification, is widespread as acetylation (Kac); however, its roles are largely unknown in kidney fibrosis. In this study, we report that histone Kcr of tubular epithelial cells is abnormally elevated in fibrotic kidneys. By screening these crotonylated/acetylated factors, a crotonyl-CoA-producing enzyme ACSS2 (acyl-CoA synthetase short chain family member 2) is found to remarkably increase histone 3 lysine 9 crotonylation (H3K9cr) level without influencing H3K9ac in kidneys and tubular epithelial cells. The integrated analysis of ChIP-seq and RNA-seq of fibrotic kidneys reveal that the hub proinflammatory cytokine IL-1ß, which is regulated by H3K9cr, play crucial roles in fibrogenesis. Furthermore, genetic and pharmacologic inhibition of ACSS2 both suppress H3K9cr-mediated IL-1ß expression, which thereby alleviate IL-1ß-dependent macrophage activation and tubular cell senescence to delay renal fibrosis. Collectively, our findings uncover that H3K9cr exerts a critical, previously unrecognized role in kidney fibrosis, where ACSS2 represents an attractive drug target to slow fibrotic kidney disease progression.


Subject(s)
Histones , Kidney Diseases , Humans , Lysine , Macrophage Activation , Kidney , Cellular Senescence , Epithelial Cells , Interleukin-1beta , Acetate-CoA Ligase
SELECTION OF CITATIONS
SEARCH DETAIL
...