Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(21): e202402178, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38480851

ABSTRACT

Incorporating stimuli-responsive components into RNA constructs provides precise spatiotemporal control over RNA structures and functions. Despite considerable advancements, the utilization of redox-responsive stimuli for the activation of caged RNAs remains scarce. In this context, we present a novel strategy that leverages post-synthetic acylation coupled with redox-responsive chemistry to exert control over RNA. To achieve this, we design and synthesize a series of acylating reagents specifically tailored for introducing disulfide-containing acyl adducts into the 2'-OH groups of RNA ("cloaking"). Our data reveal that these acyl moieties can be readily appended, effectively blocking RNA catalytic activity and folding. We also demonstrate the traceless release and reactivation of caged RNAs ("uncloaking") through reducing stimuli. By employing this strategy, RNA exhibits rapid cellular uptake, effective distribution and activation in the cytosol without lysosomal entrapment. We anticipate that our methodology will be accessible to laboratories engaged in RNA biology and holds promise as a versatile platform for RNA-based applications.


Subject(s)
Oxidation-Reduction , RNA , Acylation , RNA/chemistry , RNA/metabolism , Humans , Disulfides/chemistry
2.
Acta Biomater ; 171: 37-67, 2023 11.
Article in English | MEDLINE | ID: mdl-37714246

ABSTRACT

Coronary heart disease (CHD) is one of the major causes of death and disability worldwide, especially in low- and middle-income countries and among older populations. Conventional diagnostic and therapeutic approaches have limitations such as low sensitivity, high cost and side effects. Nanotechnology offers promising alternative strategies for the diagnosis and treatment of CHD by exploiting the unique properties of nanomaterials. In this review, we use bibliometric analysis to identify research hotspots in the application of nanotechnology in CHD and provide a comprehensive overview of the current state of the art. Nanomaterials with enhanced imaging and biosensing capabilities can improve the early detection of CHD through advanced contrast agents and high-resolution imaging techniques. Moreover, nanomaterials can facilitate targeted drug delivery, tissue engineering and modulation of inflammation and oxidative stress, thus addressing multiple aspects of CHD pathophysiology. We discuss the application of nanotechnology in CHD diagnosis (imaging and sensors) and treatment (regulation of macrophages, cardiac repair, anti-oxidative stress), and provide insights into future research directions and clinical translation. This review serves as a valuable resource for researchers and clinicians seeking to harness the potential of nanotechnology in the management of CHD. STATEMENT OF SIGNIFICANCE: Coronary heart disease (CHD) is the one of leading cause of death and disability worldwide. Nanotechnology offers new strategies for diagnosing and treating CHD by exploiting the unique properties of nanomaterials. This review uses bibliometric analysis to uncover research trends in the use of nanotechnology for CHD. We discuss the potential of nanomaterials for early CHD detection through advanced imaging and biosensing, targeted drug delivery, tissue engineering, and modulation of inflammation and oxidative stress. We also offer insights into future research directions and potential clinical applications. This work aims to guide researchers and clinicians in leveraging nanotechnology to improve CHD patient outcomes and quality of life.


Subject(s)
Coronary Disease , Nanostructures , Humans , Quality of Life , Coronary Disease/diagnosis , Coronary Disease/therapy , Nanotechnology , Nanostructures/therapeutic use , Inflammation
3.
Nanotoxicology ; 17(5): 449-470, 2023 06.
Article in English | MEDLINE | ID: mdl-37688453

ABSTRACT

Lead halide perovskites (LHPs) are outstanding candidates for next-generation optoelectronic materials, with considerable prospects of use and commercial value. However, knowledge about their toxicity is scarce, which may limit their commercialization. Here, for the first time, we studied the cardiotoxicity and molecular mechanisms of representative CsPbBr3 nanoparticles in LHPs. After their intranasal administration to Institute of Cancer Research (ICR) mice, using advanced synchrotron radiation, mass spectrometry, and ultrasound imaging, we revealed that CsPbBr3 nanoparticles can severely affect cardiac systolic function by accumulating in the myocardial tissue. RNA sequencing and Western blotting demonstrated that CsPbBr3 nanoparticles induced excessive oxidative stress in cardiomyocytes, thereby provoking endoplasmic reticulum stress, disturbing calcium homeostasis, and ultimately leading to apoptosis. Our findings highlight the cardiotoxic effects of LHPs and provide crucial toxicological data for the product.


Subject(s)
Calcium Compounds , Nanoparticles , Animals , Mice , Calcium Compounds/toxicity , Myocardium , Oxides/toxicity , Nanoparticles/toxicity
4.
Adv Healthc Mater ; 12(29): e2300819, 2023 11.
Article in English | MEDLINE | ID: mdl-37698231

ABSTRACT

Radiation-induced heart disease is a serious side effect of radiation therapy that can lead to severe consequences. However, effective and safe methods for their prevention and treatment are presently lacking. This study reports the crucial function of fullerenols in protecting cardiomyocytes from radiation injury. First, fullerenols are synthesized using a simple base-catalyzed method. Next, the as-prepared fullerenols are applied as an effective free radical scavenger and broad-spectrum antioxidant to protect against X-ray-induced cardiomyocyte injury. Their ability to reduce apoptosis via the mitochondrial signaling pathway at the cellular level is then verified. Finally, it is observed in animal models that fullerenols accumulate in the heart and alleviate myocardial damage induced by X-rays. This study represents a timely and essential analysis of the prevention and treatment of radiological myocardial injury, providing new insights into the applications of fullerenols for therapeutic strategies.


Subject(s)
Fullerenes , Radiation Injuries , Animals , Fullerenes/pharmacology , Fullerenes/therapeutic use , Antioxidants , Free Radical Scavengers , Myocytes, Cardiac
5.
ACS Appl Mater Interfaces ; 15(36): 42139-42152, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37650305

ABSTRACT

Lead-based perovskite nanoparticles (Pb-PNPs) have found extensive applications across diverse fields. However, because of poor stability and relatively strong water solubility, the potential toxicity of Pb-PNPs released into the environment during their manufacture, usage, and disposal has attracted significant attention. Inhalation is a primary route through which human exposure to Pb-PNPs occurs. Herein, the toxic effects and underlying molecular mechanisms of Pb-PNPs in the respiratory system are investigated. The in vitro cytotoxicity of CsPbBr3 nanoparticles in BEAS-2B cells is studied using multiple bioassays and electron microscopy. CsPbBr3 nanoparticles of different concentrations induce excessive oxidative stress and cell apoptosis. Furthermore, CsPbBr3 nanoparticles specifically recruit the TGF-ß1, which subsequently induces epithelial-mesenchymal transition. In addition, the biodistribution and lung toxicity of representative CsPbBr3 nanoparticles in ICR mice are investigated following intranasal administration. These findings indicate that CsPbBr3 nanoparticles significantly induce pulmonary inflammation and epithelial-mesenchymal transition and can even lead to pulmonary fibrosis in mouse models. Above findings expose the adverse effects and molecular mechanisms of Pb-PNPs in the lung, which broadens the safety data of Pb-PNPs.


Subject(s)
Lead , Lung , Mice , Humans , Animals , Mice, Inbred ICR , Lead/toxicity , Tissue Distribution
6.
Small ; 19(32): e2301129, 2023 08.
Article in English | MEDLINE | ID: mdl-37069781

ABSTRACT

Lead-based perovskite nanoparticles (Pb-PNPs) with superior optoelectronic properties are promising alternatives for the next generation of photovoltaics materials. This raises a great concern about their potential exposure toxicity in biological systems. However, little is known about their adverse effects on the gastrointestinal tract system so far. Here, the aim is to investigate the biodistribution, biotransformation, potential gastrointestinal tract toxicity, and effect on the gut microbiota after oral exposure to the CsPbBr3 perovskite nanoparticles (CPB PNPs). The advanced synchrotron radiation based microscopic X-ray fluorescence scanning and X-ray absorption near-edge spectroscopy demonstrate that high doses of CPB (CPB-H) PNPs can gradually transform into different lead-based compounds, subsequently accumulating in the gastrointestinal tract, especially the colon. Meanwhile, the pathological changes of stomach, small intestine, and colon reveal that CPB-H PNPs have higher gastrointestinal tract toxicity than Pb(Ac)2 , consequently leading to colitis-like symptoms. More importantly, 16S rRNA gene sequencing analysis discloses that CPB-H PNPs cause more significant alterations in the richness and diversity of the gut microbiota related to inflammation, intestinal barrier, and immune function than Pb(Ac)2 . The findings may contribute to shedding light on understanding the adverse effects on gastrointestinal tract and gut microbiota of Pb-PNPs.


Subject(s)
Colitis , Gastrointestinal Microbiome , Nanoparticles , Humans , Dysbiosis , Lead/pharmacology , RNA, Ribosomal, 16S/metabolism , Tissue Distribution , Colitis/chemically induced , Nanoparticles/adverse effects
7.
Biomed Pharmacother ; 162: 114733, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37087977

ABSTRACT

Doxorubicin (DOX) is an anthracycline antineoplastic agent that has limited clinical utility due to its dose-dependent cardiotoxicity. Although the exact mechanism remains unknown, inflammatory responses have been implicated in DOX-induced cardiotoxicity (DIC). In this study, we analyzed the transcriptomic, metabolomic as well as lipidomic changes in the DOX-treated mice to explore the underlying mechanisms of DIC. We found that continuous intraperitoneal DOX injections (3 mg/kg/d) for a period of five days significantly induced cardiac dysfunction and cardiac injury in male C57BL/6 J mice (8 weeks old). This corresponded to a significant increase in the myocardial levels of IL-4, IL-6, IL-10, IL-17 and IL-12p70. Furthermore, inflammation-related genes such as Ptgs2, Il1b, Cxcl5, Cxcl1, Cxcl2, Mmp3, Ccl2, Ccl12, Nfkbia, Fos, Mapk11 and Tnf were differentially expressed in the DOX-treated group, and enriched in the IL-17 and TNF signaling pathways. Besides, amino acids, peptides, imidazoles, toluenes, hybrid peptides, fatty acids and lipids such as Hex1Cer, Cer, SM, PG and ACCa were significantly associated with the expression pattern of inflammation-related genes. In conclusion, the integration of transcriptomic, metabolomic and lipidomic data identified potential new targets and biomarkers of DIC.


Subject(s)
Cardiotoxicity , Interleukin-17 , Mice , Male , Animals , Cardiotoxicity/metabolism , Interleukin-17/metabolism , Lipidomics , Transcriptome , Mice, Inbred C57BL , Doxorubicin/adverse effects , Inflammation/metabolism , Oxidative Stress , Myocytes, Cardiac/metabolism , Apoptosis
8.
J Med Chem ; 65(23): 15840-15855, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36394909

ABSTRACT

Aminoacyl-tRNA synthetases (aaRSs) are promising antimicrobial targets due to their essential roles in protein translation, and expanding their inhibitory mechanisms will provide new opportunities for drug discovery. We report here that halofuginone (HF), an herb-derived medicine, moderately inhibits prolyl-tRNA synthetases (ProRSs) from various pathogenic bacteria. A cocrystal structure of Staphylococcus aureus ProRS (SaProRS) with HF and an ATP analog was determined, which guided the design of new HF analogs. Compound 3 potently inhibited SaProRS at IC50 = 0.18 µM and Kd = 30.3 nM and showed antibacterial activities with an MIC of 1-4 µg/mL in vitro. The bacterial drug resistance to 3 only developed at a rate similar to or slower than those of clinically used antibiotics in vitro. Our study indicates that the scaffold and ATP-aided inhibitory mechanism of HF could apply to bacterial ProRS and also provides a chemical validation for using bacterial ProRS as an antibacterial target.


Subject(s)
Amino Acyl-tRNA Synthetases , Bacteria , RNA, Transfer , Adenosine Triphosphate
9.
J Med Chem ; 65(7): 5800-5820, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35363470

ABSTRACT

Aminoacyl-tRNA synthetases (aaRSs) are promising drug targets due to their essential roles in protein translation. Although current inhibitors primarily occupy one or two of the three substrate binding sites on aaRSs, we report here the structure-based design of the first class of triple-site aaRS inhibitors by targeting Salmonella enterica threonyl-tRNA synthetase (SeThrRS). Competition of our compounds with all three substrates on SeThrRS binding was confirmed via isothermal titration calorimetry assays. Cocrystal structures of three compounds bound to SeThrRS unambiguously confirmed their substrate-mimicking triple-site binding mode. Compound 36j exhibited the best enzyme activity against SeThrRS with IC50 = 19 nM and Kd = 35.4 nM. Compounds 36b, 36k, and 36l exhibited antibacterial activities with minimum inhibitory concentration values of 2-8 µg/mL against the tested bacteria, which are superior to those of the reported dual-site ThrRS inhibitors. Our study provides the first proof-of-concept for developing triple-site inhibitors against aaRSs, inspiring future aaRS-based drug discoveries.


Subject(s)
Amino Acyl-tRNA Synthetases , Amino Acyl-tRNA Synthetases/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Discovery , Microbial Sensitivity Tests , RNA, Transfer
10.
Bioorg Chem ; 114: 105040, 2021 09.
Article in English | MEDLINE | ID: mdl-34098257

ABSTRACT

DNA gyrase is an essential DNA topoisomerase that exists only in bacteria. Since novobiocin was withdrawn from the market, new scaffolds and new mechanistic GyrB inhibitors are urgently needed. In this study, we employed fragment screening and X-ray crystallography to identify new building blocks, as well as their binding mechanisms, to support the discovery of new GyrB inhibitors. In total, 84 of the 618 chemical fragments were shown to either thermally stabilize the ATPase domain of Escherichia coli GyrB or inhibit the ATPase activity of E. coli gyrase. Among them, the IC50 values of fragments 10 and 23 were determined to be 605.3 µM and 446.2 µM, respectively. Cocrystal structures of the GyrB ATPase domain with twelve fragment hits were successfully determined at a high resolution. All twelve fragments were deeply inserted in the pocket and formed H-bonds with Asp73 and Thr165, and six fragments formed an additional H-bond with the backbone oxygen of Val71. Fragment screening further highlighted the capability of Asp73, Thr165 and Val71 to bind chemicals and provided diverse building blocks for the design of GyrB inhibitors.


Subject(s)
DNA Gyrase/metabolism , Escherichia coli Proteins/metabolism , Topoisomerase II Inhibitors/chemistry , Crystallography, X-Ray , DNA Gyrase/chemistry , Escherichia coli/enzymology , Escherichia coli Proteins/chemistry , Hydrogen Bonding , Protein Binding , Protein Domains , Topoisomerase II Inhibitors/metabolism
11.
Eur J Med Chem ; 207: 112848, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32980741

ABSTRACT

Aminoacyl-tRNA synthetases (aaRSs) are an attractive class of antibacterial drug targets due to their essential roles in protein translation. While most traditional aaRS inhibitors target the binding pockets of substrate amino acids and/or ATP, we recently developed a class of novel tRNA-amino acid dual-site inhibitors including inhibitor 3 ((2S,3R)-2-amino-N-((E)-4-(6,7-dichloro-4-oxoquinazolin-3(4H)-yl)but-2-en-1-yl)-3-hydroxybutanamide) against threonyl-tRNA synthetase (ThrRS). Here, the binding modes and structure-activity relationships (SARs) of these inhibitors were analyzed by the crystal structures of Salmonella enterica ThrRS (SeThrRS) in complex with three of them. Based on the cocrystal structures, twelve quinazolinone-threonine hybrids were designed and synthesized, and their affinities, enzymatic inhibitory activities, and cellular potencies were evaluated. The best derivative 8g achieved a Kd value of 0.40 µM, an IC50 value of 0.50 µM against SeThrRS and MIC values of 16-32 µg/mL against the tested bacterial strains. The cocrystal structure of the SeThrRS-8g complex revealed that 8g induced a bended conformation for Met332 by forming hydrophobic interactions, which better mimicked the binding of tRNAThr to ThrRS. Moreover, the inhibitory potency of 8g was less impaired than a reported ATP competitive inhibitor at high concentrations of ATP, supporting our hypothesis that tRNA site inhibitors are likely superior to ATP site inhibitors in vivo, where ATP typically reaches millimolar concentrations.


Subject(s)
Drug Design , Quinazolinones/chemistry , Salmonella enterica/enzymology , Threonine-tRNA Ligase/antagonists & inhibitors , Threonine/chemistry , Threonine/pharmacology , Adenosine Triphosphate/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Binding, Competitive , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Inhibitory Concentration 50 , Salmonella enterica/drug effects , Structure-Activity Relationship , Threonine-tRNA Ligase/metabolism
12.
ACS Chem Biol ; 15(10): 2731-2740, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32880431

ABSTRACT

Staphyloferrin B is a key siderophore secreted by Staphylococcus aureus to acquire ferric ions from a host during infection, and its biosynthetic pathway has been validated to develop efficient antibacterial agents. Herein, we report the crystal structure of AMP-bound SbnC from S. aureus (SaSbnC) as the first representative structure of type B synthetases in the biosynthesis of α-hydroxycarboxylate siderophores. While type B synthetases specifically use α-ketoglutarate (α-KG) as their carboxylic acid substrate, SaSbnC showed unique structural features in the substrate pocket compared with the type A and C synthetases. Screening of α-KG analogues suggested that the hydrogen-bonding interaction between the α-carbonyl group of α-KG and residue Lys552 is a key determinant for the substrate selectivity of type B synthetases. Interestingly, citrate, the product of the tricarboxylic acid cycle and the substrate of type A synthetases, was found to inhibit the activity of SaSbnC with an IC50 value of 83 µM by mimicking α-KG binding, suggesting a potential regulatory role of the tricarboxylic acid cycle, whose activity is under the control of the intracellular iron concentration, to SaSbnC and other type B synthetases. These results provide critical new information to understand the structure, function, and regulation of type B synthetases in the siderophore-based iron acquisition system employed by a large number of pathogenic microbes.


Subject(s)
Bacterial Proteins/chemistry , Carbon-Nitrogen Ligases/chemistry , Siderophores/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Carbon-Nitrogen Ligases/antagonists & inhibitors , Carbon-Nitrogen Ligases/metabolism , Catalytic Domain , Citrates/chemistry , Citrates/metabolism , Citric Acid/chemistry , Citric Acid/metabolism , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Ketoglutaric Acids/chemistry , Ketoglutaric Acids/metabolism , Lysine/chemistry , Protein Binding , Siderophores/metabolism , Staphylococcus aureus/enzymology
13.
Eur J Med Chem ; 187: 111941, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31821989

ABSTRACT

Threonyl-tRNA synthetase (ThrRS) is a key member of the aminoacyl-tRNA synthetase (aaRS) family that plays essential roles in protein biosynthesis, and ThrRS inhibitors have potential in the therapy of multiple diseases, such as microbial infections and cancers. Based on a unique tRNA-amino acid dual-site inhibitory mechanism identified recently with the herb-derived prolyl-tRNA synthetase (ProRS) inhibitor halofuginone (HF), a series of compounds have been designed and synthesized by employing a fragment-based target hopping approach to simultaneously target the tRNAThr and l-threonine binding pockets of ThrRS. Among them, compound 30d showed an IC50 value of 1.4 µM against Salmonella enterica ThrRS (SeThrRS) and MIC values of 16-32 µg/mL against the tested bacterial strains. The cocrystal structure of SeThrRS in complex with 30d was determined at high resolution, revealing that 30d simultaneously occupies both binding pockets for the nucleotide A76 of tRNAThr and l-threonine in an ATP-independent manner, a novel mechanism compared to all other reported ThrRS inhibitors. Our study provides a new class of ThrRS inhibitors, and more importantly, it presents the first experimental evidence that the tRNA-amino acid dual-site inhibitory mechanism could apply to other aaRSs beyond ProRS, thus providing great opportunities for designing new mechanistic inhibitors for aaRS-based therapeutics.


Subject(s)
Drug Discovery , RNA, Transfer, Amino Acid-Specific/pharmacology , Threonine-tRNA Ligase/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , RNA, Transfer, Amino Acid-Specific/chemical synthesis , RNA, Transfer, Amino Acid-Specific/chemistry , Salmonella enterica/enzymology , Structure-Activity Relationship , Threonine-tRNA Ligase/metabolism
14.
Biochem Biophys Res Commun ; 508(3): 882-888, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30538042

ABSTRACT

Gambogenic acid (GNA), an active ingredient isolated from Gamboge, which possesses diverse antitumor effects in vivo and vitro. Here we were mainly designed to understand the role of GNA in drug resistance in HepG2/Adr cells. The alteration of cytotoxic drugs IC50 was examined using the MTT method. Cell apoptosis and uptake of P-glycoprotein (P-gp) substrates were measured under a flow cytometry and fluorescence microscope, respectively. Moreover, the ATPase activity, the expression of P-gp and P-gp-related proteins were also investigated. Results of the MTT method indicated that GNA increased the chemosensitivity of doxorubicin (DOX) and paclitaxel (PTX) in the HepG2/Adr cells and promoted the cell apoptosis in the presence of DOX. Meanwhile, it was also increased the retention of P-gp substrates DOX and Rhodamine 123 (Rho-123) while did not affect the ATPase activity. Furthermore, the down-regulation of P-gp expression could be contributed to multidrug resistance (MDR) upon a reversal concentration of 0.8 µg/mL GNA. Mechanistically, the expression of P-gp was reduced by GNA may result from the inhibition of the NF-kB and MAPK pathway. Collectively, GNA could be a potential inhibitor to reverse P-gp-mediated MDR in liver cancer therapy.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Liver Neoplasms/metabolism , Xanthenes/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Adenosine Triphosphatases/metabolism , Apoptosis , Doxorubicin/metabolism , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Hep G2 Cells , Humans , Liver Neoplasms/enzymology , Liver Neoplasms/genetics , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Rhodamine 123/analysis
15.
Medchemcomm ; 9(10): 1619-1629, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30429968

ABSTRACT

Discovery of new drug binding sites on well-established targets is of great interest as it facilitates the design of new mechanistic inhibitors to overcome the acquired drug resistance. Small chemical fragments can easily enter and bind to the cavities on the protein surface. Thus, they can be used to probe new druggable pockets in proteins. DNA gyrase plays indispensable roles in DNA replication, and both its GyrA and GyrB subunits are clinically validated antibacterial targets. New mechanistic GyrB inhibitors are urgently desired since the withdrawal of novobiocin from the market by the FDA due to its reduced efficiency and other reasons. Here, a fragment library was screened against the E. coli GyrB ATPase domain by combining affinity- and bioactivity-based approaches. The following X-ray crystallographic efforts were made to determine the cocrystal structures of GyrB with ten fragment hits, and three different binding modes were disclosed. Fortunately, a hydrophobic pocket which is previously unknown was identified by two fragments. Fragments that bind to this pocket were shown to inhibit the ATPase activity as well as the DNA topological transition activity of DNA gyrase in vitro. A set of fragment analogs were screened to explore the binding capacity of this pocket and identify the better starting fragments for lead development. Phylogenetic analysis revealed that this pocket is conserved in most Gram-negative and also many Gram-positive human pathogenic bacteria, implying a broad-spectrum antibacterial potential and a lower risk of mutation. Thus, the novel druggable pocket and the starting fragments provide a novel basis for designing new GyrB-targeting therapeutics.

16.
J Phys Chem B ; 109(18): 8774-8, 2005 May 12.
Article in English | MEDLINE | ID: mdl-16852041

ABSTRACT

Size-controllable tin oxide nanoparticles are prepared by heating ethylene glycol solutions containing SnCl(2) at atmospheric pressure. The particles were characterized by means of transmission electron microscopic (TEM), X-ray diffraction (XRD) studies. TEM micrographs show that the obtained material are spherical nanoparticles, the size and size distribution of which depends on the initial experimental conditions of pH value, reaction time, water concentration, and tin precursor concentration. The XRD pattern result shows that the obtained powder is SnO(2) with tetragonal crystalline structure. On the basis of UV/vis and FTIR characterization, the formation mechanism of SnO(2) nanoparticles is deduced. Moreover, the SnO(2) nanoparticles were employed to synthesize carbon-supported PtSnO(2) catalyst, and it exhibits surprisingly high promoting catalytic activity for ethanol electrooxidation.

SELECTION OF CITATIONS
SEARCH DETAIL
...