Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.039
Filter
1.
Technol Health Care ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38759057

ABSTRACT

BACKGROUND: Prosthetic hands have the potential to replace human hands. Using prosthetic hands can help patients with hand loss to complete the necessary daily living actions. OBJECTIVE: This paper studies the design of a bionic, compact, low-cost, and lightweight 3D printing humanoid hand. The five fingers are underactuated, with a total of 9 degrees of freedom. METHODS: In the design of an underactuated hand, it is a basic element composed of an actuator, spring, rope, and guide system. A single actuator is providing power for five fingers. And the dynamic simulation is carried out to calculate the motion trajectory effect. RESULTS: In this paper, the driving structure of the ultrasonic motor was designed, and the structural size of the ultrasonic motor vibrator was determined by modal and transient simulation analysis, which replace the traditional brake, realize the lightweight design of prosthetic hand, improve the motion accuracy and optimize the driving performance of prosthetic hand. CONCLUSIONS: By replacing traditional actuators with new types of actuators, lightweight design of prosthetic hands can be achieved, improving motion accuracy and optimizing the driving performance of prosthetic hands.

2.
Acta Pharmacol Sin ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719954

ABSTRACT

Hypertensive cerebrovascular remodeling involves the enlargement of vascular smooth muscle cells (VSMCs), which activates volume-regulated Cl- channels (VRCCs). The leucine-rich repeat-containing family 8 A (LRRC8A) has been shown to be the molecular identity of VRCCs. However, its role in vascular remodeling during hypertension is unclear. In this study, we used vascular smooth muscle-specific LRRC8A knockout (CKO) mice and an angiotensin II (Ang II)-induced hypertension model. The results showed that cerebrovascular remodeling during hypertension was ameliorated in CKO mice, and extracellular matrix (ECM) deposition was reduced. Based on the RNA-sequencing analysis of aortic tissues, the level of matrix metalloproteinases (MMPs), such as MMP-9 and MMP-14, were reduced in CKO mice with hypertension, which was further verified in vivo by qPCR and immunofluorescence analysis. Knockdown of LRRC8A in VSMCs inhibited the Ang II-induced upregulation of collagen I, fibronectin, and matrix metalloproteinases (MMPs), and overexpression of LRRC8A had the opposite effect. Further experiments revealed an interaction between with-no-lysine (K)-1 (WNK1), which is a "Cl--sensitive kinase", and Forkhead transcription factor O3a (FOXO3a), which is a transcription factor that regulates MMP expression. Ang II induced the phosphorylation of WNK1 and downstream FOXO3a, which then increased the expression of MMP-2 and MMP-9. This process was inhibited or potentiated when LRRC8A was knocked down or overexpressed, respectively. Overall, these results demonstrate that LRRC8A knockout in vascular smooth muscle protects against cerebrovascular remodeling during hypertension by reducing ECM deposition and inhibiting the WNK1/FOXO3a/MMP signaling pathway, demonstrating that LRRC8A is a potential therapeutic target for vascular remodeling-associated diseases such as stroke.

3.
J Cancer ; 15(10): 3010-3023, 2024.
Article in English | MEDLINE | ID: mdl-38706909

ABSTRACT

Given the heterogeneity of tumors, there is an urgent need for accurate prognostic parameters in prostate cancer (PCa) patients. Lipid metabolism (LM) reprogramming and oxidative stress (OS) play a vital role in the progression of PCa. In this work, we identified five LM-OS-related genes (including ACOX2, PPRAGC1A, PTGS1, PTGS2, and HAO1) associated with the biochemical recurrence (BCR) of PCa. Subsequently, a prognostic signature was established based on these five genes. Kaplan-Meier survival estimates, receiver operating characteristic curves, and relationship analysis between risk score and clinical characters were applied to measure the robustness of the signature in an external cohort. A nomogram of risk score combined with clinical characteristics was constructed for clinical application. Functional enrichment analysis suggested that the underlying mechanism related to the signature included the calcium signaling, lipid transport, and cell cycle signaling pathways. Furthermore, WEE1 inhibitor was identified as a potential agent related to the cell cycle for high-risk patients. The mRNA expression and the prognostic value of the five genes were determined, and ACOX2 was identified as the key gene related to the prognostic signature. The protein expression of ACOX2 was measured in a prostate tissue microarray through an immunohistochemistry assay, confirming the bioinformatics results. By constructing the ACOX2-overexpressing PCa cell lines PC-3 and 22Rv1, the biological function of PCa cells was investigated. The cell viability, colony formation, migration, and invasion ability of PCa cell lines overexpressing ACOX2 were hindered. Decreased cellular lipid content and elevated cellular ROS content were observed in ACOX2-overexpressing PCa cell lines with reduced G2/M phases. In conclusion, this work presents the first prognostic signature specifically focused on LM-OS for PCa. ACOX2 could serve as a favorable indicator for the BCR in PCa. Further experiments are required to identify the potential underlying mechanism.

4.
Opt Lett ; 49(9): 2485-2488, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691750

ABSTRACT

Dynamically manipulating the spectra and polarization properties of thermal radiation is the key to counter an infrared polarization imaging system (IPIS) under the different background environments. In this Letter, we propose a phase-change metasurface thermal emitter (PCMTE) composed of vanadium dioxide (VO2) dipole antenna arrays to dynamically manipulate polarized radiation spectra in the long-wave infrared (LWIR) region of 8-14 µm. During the thermally induced and reversible insulator-to-metal transition (IMT) in VO2, by simulating the LWIR images at different polarization angles for the PCMTE and background plates, the PCMTE can realize dynamically tunable LWIR camouflage; then, their degree of linear polarization (DoLP) can be calculated, which can demonstrate that the PCMTE can also achieve dynamically tunable LWIR polarization camouflage at the specific radiation angles and backgrounds. Our proposed PCMTE provides an effective scheme for adaptive IR polarization camouflage.

5.
Diabetologia ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772919

ABSTRACT

AIMS/HYPOTHESIS: Many studies have examined the relationship between plasma metabolites and type 2 diabetes progression, but few have explored saliva and multi-fluid metabolites. METHODS: We used LC/MS to measure plasma (n=1051) and saliva (n=635) metabolites among Puerto Rican adults from the San Juan Overweight Adults Longitudinal Study. We used elastic net regression to identify plasma, saliva and multi-fluid plasma-saliva metabolomic scores predicting baseline HOMA-IR in a training set (n=509) and validated these scores in a testing set (n=340). We used multivariable Cox proportional hazards models to estimate HRs for the association of baseline metabolomic scores predicting insulin resistance with incident type 2 diabetes (n=54) and prediabetes (characterised by impaired glucose tolerance, impaired fasting glucose and/or high HbA1c) (n=130) at 3 years, along with regression from prediabetes to normoglycaemia (n=122), adjusting for traditional diabetes-related risk factors. RESULTS: Plasma, saliva and multi-fluid plasma-saliva metabolomic scores predicting insulin resistance included highly weighted metabolites from fructose, tyrosine, lipid and amino acid metabolism. Each SD increase in the plasma (HR 1.99 [95% CI 1.18, 3.38]; p=0.01) and multi-fluid (1.80 [1.06, 3.07]; p=0.03) metabolomic scores was associated with higher risk of type 2 diabetes. The saliva metabolomic score was associated with incident prediabetes (1.48 [1.17, 1.86]; p=0.001). All three metabolomic scores were significantly associated with lower likelihood of regressing from prediabetes to normoglycaemia in models adjusting for adiposity (HRs 0.72 for plasma, 0.78 for saliva and 0.72 for multi-fluid), but associations were attenuated when adjusting for lipid and glycaemic measures. CONCLUSIONS/INTERPRETATION: The plasma metabolomic score predicting insulin resistance was more strongly associated with incident type 2 diabetes than the saliva metabolomic score. Only the saliva metabolomic score was associated with incident prediabetes.

6.
J Plast Surg Hand Surg ; 59: 72-76, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769787

ABSTRACT

BACKGROUND: The purpose of this article is to introduce a method that combines limited debridement and ReCell® autologous cell regeneration techniques for the treatment of deep second-degree burn wounds. METHOD: A total of 20 patients suffered with deep second-degree burns less than 10% of total body surface area (TBSA) who were admitted to our department, from June 2019 to June 2021, participated in this study. These patients first underwent limited debridement with an electric/pneumatic dermatome, followed by the ReCell® technique for secondary wounds. Routine treatment was applied to prevent scarring after the wound healed. Clinical outcomes were scored using the Vancouver Scar Scale (VSS). RESULTS: All wounds of the patients healed completely. One patient developed an infection in the skin graft area and finally recovered by routine dressing changes. The average healing time was 12 days (range: 10-15 days). The new skin in the treated area was soft and matched the colour of the surrounding normal skin and the VSS score ranged from 3~5 for each patient. Of the 20 patients, 19 were very satisfied and 1 was satisfied. CONCLUSIONS: This article reports a useful treatment method that combines electric dermatome-dependent limited debridement and the ReCell® technique for the treatment of deep second-degree burn wounds. It is a feasible and effective strategy that is easy to implement and minimally invasive, and it is associated with a short healing time, mild scar formation and little damage to the donor skin area.


Subject(s)
Burns , Debridement , Skin Transplantation , Humans , Burns/surgery , Burns/therapy , Debridement/methods , Male , Adult , Female , Skin Transplantation/methods , Middle Aged , Young Adult , Wound Healing/physiology , Cicatrix , Adolescent , Polyesters
7.
J Nat Med ; 78(3): 633-643, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704807

ABSTRACT

Hepatocellular carcinoma (HCC) is a malignant tumor with extremely high mortality. The tumor microenvironment is the "soil" of its occurrence and development, and the inflammatory microenvironment is an important part of the "soil". Bile acid is closely related to the occurrence of HCC. Bile acid metabolism disorder is not only directly involved in the occurrence and development of HCC but also affects the inflammatory microenvironment of HCC. Yinchenhao decoction, a traditional Chinese medicine formula, can regulate bile acid metabolism and may affect the inflammatory microenvironment of HCC. To determine the effect of Yinchenhao decoction on bile acid metabolism in mice with HCC and to explore the possible mechanism by which Yinchenhao decoction improves the inflammatory microenvironment of HCC by regulating bile acid metabolism, we established mice model of orthotopic transplantation of hepatocellular carcinoma. These mice were treated with three doses of Yinchenhao decoction, then liver samples were collected and tested. Yinchenhao decoction can regulate the disorder of bile acid metabolism in liver cancer mice. Besides, it can improve inflammatory reactions, reduce hepatocyte degeneration and necrosis, and even reduce liver weight and the liver index. Taurochenodeoxycholic acid, hyodeoxycholic acid, and taurohyodeoxycholic acid are important molecules in the regulation of the liver inflammatory microenvironment, laying a foundation for the regulation of the liver tumor inflammatory microenvironment based on bile acids. Yinchenhao decoction may improve the inflammatory microenvironment of mice with HCC by ameliorating hepatic bile acid metabolism.


Subject(s)
Bile Acids and Salts , Carcinoma, Hepatocellular , Drugs, Chinese Herbal , Liver Neoplasms , Tumor Microenvironment , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Mice , Bile Acids and Salts/metabolism , Tumor Microenvironment/drug effects , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Male , Liver/drug effects , Liver/metabolism , Liver/pathology , Inflammation/drug therapy , Inflammation/metabolism
8.
RSC Adv ; 14(15): 10378-10389, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38567344

ABSTRACT

The smallest Hückel aromatic ring cyclopropenium substituted by electron-donating C-amino groups produced a aminocyclopropenium electron-rich cation. A bifunctional aminocyclopropenium halide catalyst installed with bis-(hydroxyethyl) functions on the amino group was then designed. A typical (diethanolamino)cyclopropenium halide catalyst C5·I was screened optimally for the cycloaddition of carbon disulfide into an epoxide to produce cyclic dithiocarbonate with an excellent conversion (95%) and high selectivity (92%). The electrostatic enhancement of alkyl C-H HBD capability was implemented via vicinal positive charges on the cyclopropenium core, and the acidity of the terminal O-H hydrogen proton increased by intramolecular H-bonding between the two hydroxy groups on the diethanolamino group (O-H⋯O-H). Then, a hybrid H-bond donor comprising enhanced alkyl C-H and hydroxy O-H was formed. The hybrid HBD offered by aminocyclopropenium was vital in activating the epoxide and stabilizing the intermediate, resulting in reduced O/S scrambling. Moreover, weakly coordinated iodide anion served as a nucleophilic reagent to open the ring of the epoxide. The cooperative catalytic mechanism of the HBD cation and halide anion was supported by NMR titrations and control experiments. Eleven epoxides with various substituents were converted into the corresponding cyclic thiocarbonate with high conversion and selectivity under mild conditions (25 °C, 6 h) without a solvent. The cycloaddition of carbon disulfide with epoxides catalyzed by aminocyclopropenium developed a new working model for hydrogen bonding organocatalysis.

9.
Chin J Traumatol ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38570272

ABSTRACT

Spinal cord injury (SCI) is a devastating traumatic disease seriously impairing the quality of life in patients. Expectations to allow the hopeless central nervous system to repair itself after injury are unfeasible. Developing new approaches to regenerate the central nervous system is still the priority. Exosomes derived from mesenchymal stem cells (MSC-Exo) have been proven to robustly quench the inflammatory response or oxidative stress and curb neuronal apoptosis and autophagy following SCI, which are the key processes to rescue damaged spinal cord neurons and restore their functions. Nonetheless, MSC-Exo in SCI received scant attention. In this review, we reviewed our previous work and other studies to summarize the roles of MSC-Exo in SCI and its underlying mechanisms. Furthermore, we also focus on the application of exosomes as drug carriers in SCI. In particular, it combs the advantages of exosomes as drug carriers for SCI, imaging advantages, drug types, loading methods, etc., which provides the latest progress for exosomes in the treatment of SCI, especially drug carriers.

10.
J Integr Med ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38599914

ABSTRACT

OBJECTIVE: The effects of arsenic trioxide (As2O3) on hepatocellular carcinoma have been documented widely. Autophagy plays dual roles in the survival and death of cancer cells. Therefore, we investigated the exact role of autophagy in As2O3-induced apoptosis in liver cancer cells. METHODS: The viability of hepatoma cells was determined using the MTT assay with or without fetal bovine serum. The rate of apoptosis in liver cancer cells treated with As2O3 was evaluated using flow cytometry, Hoechst 33258 staining, and TUNEL assays. The rate of autophagy among liver cancer cells treated with As2O3 was detected using immunofluorescence, Western blot assay and transmission electron microscopy. RESULTS: Upon treatment with As2O3, the viability of HepG2 and SMMC-7721 cells was decreased in a time- and dose-dependent manner. The apoptosis rates of both liver cancer cell lines increased with the concentration of As2O3, as shown by flow cytometry. Apoptosis in liver cancer cells treated with As2O3 was also shown by the activation of the caspase cascade and the regulation of Bcl-2/Bax expression. Furthermore, As2O3 treatment induced autophagy in liver cancer cells; this finding was supported by Western blot, immunofluorescence of LC3-II and beclin 1, and transmission electron microscopy. In liver cancer cells, As2O3 inhibited the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signal pathway that plays a vital role in both apoptosis and autophagy. The PI3K activator SC-79 partially reversed As2O3-induced autophagy and apoptosis. Furthermore, inhibiting autophagy with 3-methyladenine partially reversed the negative effects of As2O3 on cell viability. Serum starvation increased autophagy and amplified the effect of As2O3 on cell death. CONCLUSION: As2O3 induces apoptosis and autophagy in liver cancer cells. Autophagy induced by As2O3 may have a proapoptotic effect that helps to reduce the viability of liver cancer cells. This study provides novel insights into the effects of As2O3 against liver cancer. Please cite this article as: Deng ZT, Liang SF, Huang GK, Wang YQ, Tu XY, Zhang YN, Li S, Liu T, Cheng BB. Autophagy plays a pro-apoptotic role in arsenic trioxide-induced cell death of liver cancer. J Integr Med. 2024; Epub ahead of print.

11.
Phys Rev Lett ; 132(13): 133603, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38613308

ABSTRACT

An integrated quantum light source is increasingly desirable in large-scale quantum information processing. Despite recent remarkable advances, a new material platform is constantly being explored for the fully on-chip integration of quantum light generation, active and passive manipulation, and detection. Here, for the first time, we demonstrate a gallium nitride (GaN) microring based quantum light generation in the telecom C-band, which has potential toward the monolithic integration of quantum light source. In our demonstration, the GaN microring has a free spectral range of 330 GHz and a near-zero anomalous dispersion region of over 100 nm. The generation of energy-time entangled photon pair is demonstrated with a typical raw two-photon interference visibility of 95.5±6.5%, which is further configured to generate a heralded single photon with a typical heralded second-order autocorrelation g_{H}^{(2)}(0) of 0.045±0.001. Our results pave the way for developing a chip-scale quantum photonic circuit.

12.
Adv Sci (Weinh) ; : e2402272, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639395

ABSTRACT

Here, a photocatalytic asymmetric multicomponent cascade Minisci reaction of ß-carbolines with enamides and diazo compounds is reported, enabling an effective enantioselective radical C─H functionalization of ß-carbolines with high yields and enantioselectivity (up to 83% yield and 95% ee). This enantioselective multicomponent Minisci protocol exhibits step economy, high chemo-/enantio-selective control, and good functional group tolerance, allowing access to a variety of valuable chiral ß-carbolines. Notably, diazo compounds are suitable radical precursors in enantioselective cascade radical reactions. Moreover, the efficiency and practicality of this approach are demonstrated by the asymmetric synthesis of bioactive compounds and natural products.

13.
Front Genet ; 15: 1328234, 2024.
Article in English | MEDLINE | ID: mdl-38586587

ABSTRACT

Idiopathic pulmonary arterial hypertension (IPAH) is a rare and severe cardiopulmonary disease with a challenging prognosis, and its underlying pathogenesis remains elusive. A comprehensive understanding of IPAH is crucial to unveil potential diagnostic markers and therapeutic targets. In this study, we investigated cellular heterogeneity and molecular pathology in IPAH using single-cell RNA sequencing (scRNA-seq) analysis. Our scRNA-seq results revealed significant alterations in three crucial signaling pathways in IPAH: the hypoxia pathway, TGF ß pathway, and ROS pathway, primarily attributed to changes in gene expression within arterial endothelial cells. Moreover, through bulk RNA sequencing analysis, we identified differentially expressed genes (DEGs) enriched in GO and KEGG pathways, implicated in regulating cell adhesion and oxidative phosphorylation in IPAH lungs. Similarly, DEGs-enriched pathways in IPAH arterial endothelial cells were also identified. By integrating DEGs from three IPAH datasets and applying protein-protein interaction (PPI) analysis, we identified 12 candidate biomarkers. Subsequent validation in two additional PAH datasets led us to highlight five potential biomarkers (CTNNB1, MAPK3, ITGB1, HSP90AA1, and DDX5) with promising diagnostic significance for IPAH. Furthermore, real-time quantitative polymerase chain reaction (RT-qPCR) confirmed significant differences in the expression of these five genes in pulmonary arterial endothelial cells from PAH mice. In conclusion, our findings shed light on the pivotal role of arterial endothelial cells in the development of IPAH. Furthermore, the integration of single-cell and bulk RNA sequencing datasets allowed us to pinpoint novel candidate biomarkers for the diagnosis of IPAH. This work opens up new avenues for research and potential therapeutic interventions in IPAH management.

14.
Environ Toxicol ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38591852

ABSTRACT

This study investigates the influence of aging-related genes on endometrial cancer, a prominent gynecological malignancy with rising incidence and mortality. By analyzing gene expression differences between cancerous and normal endometrial tissues, 42 aging-related genes were identified as differentially expressed. Utilizing the TCGA-UCEC sample, consensus clustering divided the samples into two molecular subgroups, Aging low and Aging high, based on their expression profiles. These subgroups showed distinct prognoses and survival rates, with the Aging high group associated with DNA repair and cell cycle pathways, and the Aging low group showing suppressed metabolic pathways and increased immune cell infiltration, suggesting a potential for better immunotherapy outcomes. Mutation analysis did not find significant differences in mutation frequencies between the groups, but a high Tumor Mutation Burden (TMB) correlated with better prognosis. A risk score model was also developed, showcasing significant prognostic power. Further analysis of the SIX1 gene revealed its overexpression in cancer cells. Drug sensitivity tests indicated that the low-risk group might respond better to chemotherapy. This research underscores the significance of aging-related genes in endometrial cancer, offering insights into their prognostic value and therapeutic potential, which could lead to personalized treatment approaches and enhanced patient management.

15.
Ann Neurol ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38591875

ABSTRACT

OBJECTIVE: The aim of this study was to assess the diagnostic utility of cerebrospinal fluid (CSF) myelin oligodendrocyte glycoprotein antibodies (MOG-IgG) testing. METHODS: We retrospectively identified patients for CSF MOG-IgG testing from January 1, 1996, to May 1, 2023, at Mayo Clinic and other medical centers that sent CSF MOG-IgG for testing including: controls, 282; serum MOG-IgG positive MOG antibody-associated disease (MOGAD), 74; serum MOG-IgG negative high-risk phenotypes, 73; serum false positive MOG-IgG with alternative diagnoses, 18. A live cell-based assay assessed CSF MOG-IgG positivity (IgG-binding-index [IBI], ≥2.5) using multiple anti-human secondary antibodies and end-titers were calculated if sufficient sample volume. Correlation of CSF MOG-IgG IBI and titer was assessed. RESULTS: The pan-IgG Fc-specific secondary was optimal, yielding CSF MOG-IgG sensitivity of 90% and specificity of 98% (Youden's index 0.88). CSF MOG-IgG was positive in: 4/282 (1.4%) controls; 66/74 (89%) serum MOG-IgG positive MOGAD patients; and 9/73 (12%) serum MOG-IgG negative patients with high-risk phenotypes. Serum negative but CSF positive MOG-IgG accounted for 9/83 (11%) MOGAD patients, and all fulfilled 2023 MOGAD diagnostic criteria. Subgroup analysis of serum MOG-IgG low-positives revealed CSF MOG-IgG positivity more in MOGAD (13/16[81%]) than other diseases with false positive serum MOG-IgG (3/15[20%]) (p = 0.01). CSF MOG-IgG IBI and CSF MOG-IgG titer (both available in 29 samples) were correlated (Spearman's r = 0.64, p < 0.001). INTERPRETATION: CSF MOG-IgG testing has diagnostic utility in patients with a suspicious phenotype but negative serum MOG-IgG, and those with low positive serum MOG-IgG results and diagnostic uncertainty. These findings support a role for CSF MOG-IgG testing in the appropriate clinical setting. ANN NEUROL 2024.

16.
Eur Spine J ; 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38584243

ABSTRACT

BACKGROUND: Spinal multiple myeloma (MM) and solitary plasmacytoma of bone (SPB), both plasma cell neoplasms, greatly affect patients' quality of life due to spinal involvement. Accurate prediction of surgical outcomes is crucial for personalized patient care, but systematic treatment guidelines and predictive models are lacking. OBJECTIVE: This study aimed to develop and validate a machine learning (ML)-based model to predict postoperative outcomes and identify prognostic factors for patients with spinal MM and SPB. METHODS: A retrospective analysis was conducted on patients diagnosed with MM or SPB from 2011 to 2015, followed by prospective data collection from 2016 to 2017. Patient demographics, tumor characteristics, clinical treatments, and laboratory results were analyzed as input features. Four types of ML algorithms were employed for model development. The performance was assessed using discrimination and calibration measures, and the Shapley Additive exPlanations (SHAP) method was applied for model interpretation. RESULTS: A total of 169 patients were included, with 119 for model training and 50 for validation. The Gaussian Naïve Bayes (GNB) model exhibited superior predictive accuracy and stability. Prospective validation on the 50 patients revealed an area under the curve (AUC) of 0.863, effectively distinguishing between 5-year survivors and non-survivors. Key prognostic factors identified included International Staging System (ISS) stage, Durie-Salmon (DS) stage, targeted therapy, and age. CONCLUSIONS: The GNB model has the best performance and high reliability in predicting postoperative outcomes. Variables such as ISS stage and DS stage were significant in influencing patient prognosis. This study enhances the ability to identify patients at risk of poor outcomes, thereby aiding clinical decision-making.

17.
Int J Surg ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38597388

ABSTRACT

BACKGROUND: The efficacy of laparoscopic completion total gastrectomy (LCTG) for remnant gastric cancer (RGC) remains controversial. METHODS: The primary outcome was postoperative morbidity within 30 days after surgery. Secondary outcomes included 3-year disease-free survival (DFS), 3-year overall survival (OS), and recurrence. Inverse probability treatment weighted (IPTW) was used to balance the baseline between LCTG and OCTG. RESULTS: Final analysis included 46 patients with RGC who underwent LCTG at the FJMUUH between June 2016 and June 2020. The historical control group comprised of 160 patients who underwent open completion total gastrectomy (OCTG) in the six tertiary teaching hospitals from CRGC-01 study. After IPTW, no significant difference was observed between the LCTG and OCTG groups in terms of incidence (LCTG vs. OCTG: 28.0% vs. 35.0%, P=0.379) or severity of complications within 30 days after surgery. Compared with OCTG, LCTG resulted in better short-term outcomes and faster postoperative recovery. However, the textbook outcome rate was comparable between the two groups (45.9% vs. 32.8%, P=0.107). Additionally, the 3-year DFS and 3-year OS of LCTG were comparable to those of OCTG (DFS: log-rank P=0.173; OS: log-rank P=0.319). No significant differences in recurrence type, mean recurrence time, or 3-year cumulative hazard of recurrence were observed between the two groups (all P>0.05). Subgroup analyses and concurrent comparisons demonstrated similar trends. CONCLUSIONS: This prospective study suggested that LCTG was non-inferior to OCTG in both short- and long-term outcomes. In experienced centers, LCTG may be considered as a viable treatment option for RGC.

18.
AMB Express ; 14(1): 34, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600342

ABSTRACT

Heat stress is one of the major abiotic stresses affecting the growth, sporulation, colonization and survival of Trichoderma viride. This study aimed to gain a better insight into the underlying mechanism governing the heat stress response of T. viride Tv-1511. We analysed the transcriptomic changes of Tv-1511 under normal and heat stress conditions using RNA sequencing. We observed that Tv-1511 regulates the biosynthesis of secondary metabolites through a complex network of signalling pathways. Additionally, it significantly activates the anti-oxidant defence system, heat shock proteins and stress-response-related transcription factors in response to heat stress. TvHSP70 was identified as a key gene, and transgenic Tv-1511 overexpressing TvHSP70 (TvHSP70-OE) was generated. We conducted an integrated morphological, physiological and molecular analyses of the TvHSP70-OE and wild-type strains. We observed that TvHSP70 over-expression significantly triggered the growth, anti-oxidant capacity, anti-fungal activity and growth-promoting ability of Tv-1511. Regarding anti-oxidant capacity, TvHSP70 primarily up-regulated genes involved in enzymatic and non-enzymatic anti-oxidant systems. In terms of anti-fungal activity, TvHSP70 primarily activated genes involved in the synthesis of enediyne, anti-fungal and aminoglycoside antibiotics. This study provides a comparative analysis of the functional significance and molecular mechanisms of HSP70 in Trichoderma. These findings provide a valuable foundation for further analyses.

20.
Org Lett ; 26(15): 3140-3144, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38563571

ABSTRACT

Carbonylative multifunctionalization of alkenes is an efficient approach to introduce multiple functional groups into one molecule from easily available materials. Herein, we developed an iron-catalyzed radical relay carbonylative cyclization of alkenes with acetamides. Various α-tetralones can be constructed in moderate yields from readily available substrates with an earth-abundant iron salt as the catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...