Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37686436

ABSTRACT

Organelles play core roles in living beings, especially in internal cellular actions, but the hidden information inside the cell is difficult to extract in a label-free manner. In recent years, terahertz (THz) imaging has attracted much attention because of its penetration depth in nonpolar and non-metallic materials and label-free, non-invasive and non-ionizing ability to obtain the interior information of bio-samples. However, the low spatial resolution of traditional far-field THz imaging systems and the weak dielectric contrast of biological samples hinder the application of this technology in the biological field. In this paper, we used an advanced THz scattering near-field imaging method for detecting chloroplasts on gold substrate with nano-flatness combined with an image processing method to remove the background noise and successfully obtained the subcellular-grade internal reticular structure from an Arabidopsis chloroplast THz image. In contrast, little inner information could be observed in the tea chloroplast in similar THz images. Further, transmission electron microscopy (TEM) and mass spectroscopy (MS) were also used to detect structural and chemical differences inside the chloroplasts of Arabidopsis and tea plants. The preliminary results suggested that the interspecific different THz information is related to the internal spatial structures of chloroplasts and metabolite differences among species. Therefore, this method could open a new way to study the structure of individual organelles.


Subject(s)
Arabidopsis , Radionuclide Imaging , Microscopy, Atomic Force , Chloroplasts , Tea
2.
Article in English | MEDLINE | ID: mdl-35886230

ABSTRACT

Soil heavy metal pollution is becoming an increasingly serious environmental problem. This study was performed to investigate the contents of surface soil heavy metals (Cu, Zn, Pb, Cd) near six roads in the southern part of the Tibetan Plateau. Multivariate statistics, geoaccumulation index, potential ecological risk, and a human health assessment model were used to study the spatial pollution pattern and identify the main pollutants and regions of concern. The mean Igeo was ranked in the order Cd > Cu > Zn > Pb, with the average concentrations of Cd, Zn, and Cu exceeding their corresponding background levels 4.36-, 1.00-, and 1.8-fold, respectively. Soil Cd level was classified as posing a considerable potential risk near national highways and a high potential risk near non-national highways, whereas soil Cu, Zn, and Pb were associated with a low potential ecological risk for each class of roads. Furthermore, the non-carcinogenic risk due to soil heavy metals for each class of roads was within the acceptable risk level for three exposure pathways for both adults and children, but the carcinogenic risk attributable to soil Pb exceeded the threshold for children near highways G318, G562, and G219 and for adults near highway G318. Our work not only underscores the importance of assessing potential threats to ecological and human health due to soil heavy metal pollution on road surfaces but also provides quantitative guidance for remediation actions.


Subject(s)
Metals, Heavy , Soil Pollutants , Adult , Cadmium , Child , China , Environmental Monitoring , Humans , Lead , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis , Tibet
3.
Article in English | MEDLINE | ID: mdl-35162629

ABSTRACT

Understanding the spatiotemporal characteristics of PM2.5 concentrations and identifying their associated meteorological factors can provide useful insight for implementing air pollution interventions. In this study, we used daily air quality monitoring data for 28 air pollution transmission channel cities in the Beijing-Tianjin-Hebei region during 2014-2019 to quantify the relative contributions of meteorological factors on spatiotemporal variation in PM2.5 concentration by combining time series and spatial perspectives. The results show that annual mean PM2.5 concentration significantly decreased in 24 of the channel cities from 2014 to 2019, but they all still exceeded the Grade II Chinese Ambient Air Quality Standards (35 µg m-3) in 2019. PM2.5 concentrations exhibited clear spatial agglomeration in the most polluted season, and their spatial pattern changed slightly over time. Meteorological variables accounted for 31.96% of the temporal variation in PM2.5 concentration among the 28 cities during the study period, with minimum temperature and average relative humidity as the most critical factors. Spatially, atmospheric pressure and maximum temperature played a key role in the distribution of PM2.5 concentration in spring and summer, whereas the effect of sunshine hours increased greatly in autumn and winter. These findings highlight the importance of future clean air policy making, but also provide a theoretical support for precise forecasting and prevention of PM2.5 pollution.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Beijing , China , Cities , Environmental Monitoring/methods , Particulate Matter/analysis , Seasons
4.
BMC Cancer ; 21(1): 1290, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34856955

ABSTRACT

BACKGROUND: RNA cargo in exosomes, especially microRNAs (miRNAs), play an important role in the chemotherapy drug resistance of human cancers. However, the role and mechanism of exosomal miR-107 on multidrug resistance of gastric cancer cells was still not clear. In this study, we sought to explore whether exosomal miR-107 could reverse the resistance of gastric cancer cells to the chemotherapy drugs. METHODS: We extracted exosomes from sensitive (SGC-7901, MGC-803) and resistant (SGC-7901/5-FU) gastric cancer cells by ultracentrifugation and the isolated exosomes were identified using transmission electron microscopy (TEM) and dynamic light scattering analysis (DLS). The expression of miR-107 and high mobility group A2 (HMGA2) were detected by real-time quantitative PCR (RT-qPCR). MTT assay was used to investigate the effect of exosomes on gastric cancer cells growth in vitro. The uptake of exosomes by recipient cells were observed using a fluorescence microscope. The predicted target relationship between miR-107 and HMGA2 was verified by gauss-luciferase reporter assay. The expression of HMGA2, p-mTOR/mTOR, P-gp and other exosomal indicated marker proteins was detected by western blot. RESULTS: Our results indicated that the isolated exosomes were typically cup-like lipid bilayer membranes structure. SGC-7901/5-FU cells were cross-resistant to chemotherapy drug cisplatin (CDDP), and the sensitive cells-secreted exosomes drastically reversed the resistance of the resistant GC cells to the chemotherapeutic drugs, which was verified by exosomal inhibitor GW4896. Mechanistically, the reversal effect was mainly mediated by exosome-secreted miR-107 through downregulating the expression of target molecular HMGA2 and inhibiting HMGA2/mTOR/P-gp pathway, which were supported by results from luciferase reporter assay and rescue assay. CONCLUSIONS: These findings demonstrated that exosome-transmitted miR-107 significantly enhanced the sensitivity of resistant gastric cancer cells to chemotherapeutic agents by mediating the HMGA2/mTOR/P-gp axis and exosomal miR-107 may be a novel target in gastric cancers treatment.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Drug Resistance, Neoplasm/genetics , Exosomes/metabolism , HMGA2 Protein/metabolism , MicroRNAs/metabolism , Stomach Neoplasms/genetics , TOR Serine-Threonine Kinases/metabolism , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cisplatin/therapeutic use , Down-Regulation , Drug Resistance, Multiple/genetics , Exosomes/transplantation , Exosomes/ultrastructure , Fluorescent Dyes , Fluorouracil/therapeutic use , HMGA2 Protein/genetics , Humans , Microscopy, Electron, Transmission , Organic Chemicals , Stomach Neoplasms/drug therapy
5.
Int J Mol Sci ; 22(10)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064673

ABSTRACT

Histone methylation plays an important regulatory role in the drought response of many plants, but its regulatory mechanism in the drought response of the tea plant remains poorly understood. Here, drought stress was shown to induce lower relative water content and significantly downregulate the methylations of histone H3K4 in the tea plant. Based on our previous analysis of the SET Domain Group (SDG) gene family, the full-length coding sequence (CDS) of CsSDG36 was cloned from the tea cultivar 'Fuding Dabaicha'. Bioinformatics analysis showed that the open reading frame (ORF) of the CsSDG36 gene was 3138 bp, encoding 1045 amino acids and containing the conserved structural domains of PWWP, PHD, SET and PostSET. The CsSDG36 protein showed a close relationship to AtATX4 of the TRX subfamily, with a molecular weight of 118,249.89 Da, and a theoretical isoelectric point of 8.87, belonging to a hydrophilic protein without a transmembrane domain, probably located on the nucleus. The expression of CsSDG36 was not detected in the wild type, while it was clearly detected in the over-expression lines of Arabidopsis. Compared with the wild type, the over-expression lines exhibited lower hyperosmotic resistance by accelerating plant water loss, increasing reactive oxygen species (ROS) pressure, and increasing leaf stomatal density. RNA-seq analysis suggested that the CsSDG36 overexpression caused the differential expression of genes related to chromatin assembly, microtubule assembly, and leaf stomatal development pathways. qRT-PCR analysis revealed the significant down-regulation of stomatal development-related genes (BASL, SBT1.2(SDD1), EPF2, TCX3, CHAL, TMM, SPCH, ERL1, and EPFL9) in the overexpression lines. This study provides a novel sight on the function of histone methyltransferase CsSDG36 under drought stress.


Subject(s)
Arabidopsis/physiology , Histone-Lysine N-Methyltransferase/metabolism , Osmotic Pressure , Plant Proteins/metabolism , Stress, Physiological , Tea/enzymology , Gene Expression Regulation, Plant , Histone-Lysine N-Methyltransferase/genetics , Plant Proteins/genetics , Tea/chemistry
6.
Anal Bioanal Chem ; 413(17): 4427-4439, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34028561

ABSTRACT

Nucleic acid aptamers are small fragments of DNA or RNA molecules binding specifically to targets, which can be obtained through in vitro screening via systematic evolution of ligands by exponential enrichment (SELEX). Lactate dehydrogenase (LDH) is an important tumor marker, whose level in patients is of great significance for diagnosis of many diseases. Here, we report the identification of LDH aptamers by 9 rounds of screening from a length-mixed single-stranded DNA library using the SELEX technology. After the 3rd and 7th rounds of aptamer screening, affinity was significantly improved, and fluorescence quantitative analysis showed stronger affinity for the aptamers selected from the 7th to 9th rounds of screening. After high-throughput sequencing, motif analysis, and secondary structure prediction, we finally chose and further investigated 15 candidate LDH aptamer sequences with obvious differences in secondary structure in the 7th to 9th rounds of screening. Among them, LDH7-1, LDH7-9, LDH8-2, and LDH9-1 were shown to bind to LDH protein with high affinity and specificity with Kd < 25 nM. This study provides new ideas for rapid detection of LDH protein content and enzyme activity, thus contributing to the development of rapid medical detection.


Subject(s)
Aptamers, Nucleotide/chemistry , DNA, Single-Stranded/chemistry , L-Lactate Dehydrogenase/chemistry , SELEX Aptamer Technique/methods , Base Sequence , Binding Sites , Humans
7.
Sci Total Environ ; 725: 138342, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32464745

ABSTRACT

Spring green-up date (GUD) is a sensitive indicator of climate change, and of great significance to winter wheat production. However, our knowledge of the chain relationships among them is relatively weak. In this study, based on 8-day Enhanced Vegetation Index (EVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS) from 2001 to 2015, we first assessed the performance of four algorithms for extracting winter wheat GUD in the North China Plain (NCP). A multiple linear regression model was then established to quantitatively determine the contributions of the time lag effects of hydrothermal variation on GUD. We further investigated the interactions between GUD and gross primary production (GPP) comprehensively. Our results showed that the rate of change in curvature algorithm (RCCmax) had better performance in capturing the spatiotemporal variation of winter wheat GUD relative to the other three methods (Kmax, CRmax, and cumCRmax). Regarding the non-identical lag time effects of hydrothermal factors, hydrothermal variations could explain winter wheat GUD variations for 82.05% of all pixels, 36.78% higher than that without considering the time lag effects. Variation in GUD negatively correlated with winter wheat GPP after green up in most parts of the NCP, significantly in 35.75% of all pixels with a mean rate of 1.89 g C m-2 yr-1 day-1. Meanwhile, winter wheat GPP exerted a strongly positive feedback on GUD in >82.42% of all pixels (significant in 28.01% of all pixels), characterized by a humped-shape pattern along the long-term average plant productivity. This finding highlights the complex interaction between spring phenology and plant productivity, and also suggests the importance of preseason climate factors on spring phenology.


Subject(s)
Climate Change , Triticum , China , Satellite Imagery , Seasons
8.
Article in English | MEDLINE | ID: mdl-32121657

ABSTRACT

The Beijing-Tianjin-Hebei (BTH) air pollution transmission channel and its surrounding areas are of importance to air pollution control in China. Based on daily data of air quality index (AQI) and air pollutants (PM2.5, PM10, SO2, NO2, CO, and O3) from 2015 to 2016, this study analyzed the spatial and temporal characteristics of air pollution and influencing factors in Henan Province, a key region of the BTH air pollution transmission channel. The result showed that non-attainment days and NAQI were slightly improved at the provincial scale during the study period, whereas that in Hebi, Puyang, and Anyang became worse. PM2.5 was the largest contributor to the air pollution in all cities based on the number of non-attainment days, but its mean frequency decreased by 21.62%, with the mean occurrence of O3 doubled. The spatial distribution of NAQI presented a spatial agglomeration pattern, with high-high agglomeration area varying from Jiaozuo, Xinxiang, and Zhengzhou to Anyang and Hebi. In addition, the NAQI was negatively correlated with sunshine duration, temperature, relative humidity, wind speed, and positively to atmospheric pressure and relative humidity in all four clusters, whereas relationships between socioeconomic factors and NAQI differed among them. These findings highlight the need to establish and adjust regional joint prevention and control of air pollution as well as suggest that it is crucially important for implementing effective strategies for O3 pollution control.


Subject(s)
Air Pollutants , Air Pollution , Air Pollution/analysis , Beijing , China , Cities , Environmental Monitoring , Particulate Matter
SELECTION OF CITATIONS
SEARCH DETAIL
...