Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 351: 119997, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160546

ABSTRACT

We report a novel modified semi-carbonized fiber (CF) prepared using cotton and acrylic clothes for derisking contaminated water to realize the resource utilization of discarded clothes in wastewater treatment. In this study, amphoteric and auxiliary modifiers were used to modify CFs for preparing amphoteric and amphoteric-auxiliary CFs. The basic physicochemical properties of different modified CFs were determined, and the microscopic morphology of modified CFs was detected. The isothermal adsorption characteristics of Cu(II) and Pb(II) on different modified CFs were investigated by the batch method, and the effect mechanisms of temperature, pH, ionic strength, and material dose were compared. Physicochemical properties and microscopic morphology results proved that amphoteric and auxiliary modifiers were modified on the CF surface and changed the surface properties of CF. The adsorption capacities of Cu(II) and Pb(II) on modified CFs increased with the increase in equilibrium concentration of Cu(II) and Pb(II), and the isotherm was more suitable for Freundlich model fitting than that of the Langmuir model. The maximum adsorption capacities (qm) of Cu(II) and Pb(II) on different modified CFs were 60.72-81.26 mg/g and 102.58-161.72 mg/g, respectively, and presented the trend of amphoteric-auxiliary CFs > amphoteric CFs > CFs. Increasing pH and temperature and decreasing ionic strength and material dose were beneficial to Cu(II) and Pb(II) adsorption. The Cu(II) and Pb(II) adsorption process was a spontaneous, endothermic, and entropy-increasing reaction, and the adsorption rate was controlled by chemisorption. The adsorption amount of amphoteric-auxiliary CFs maintained about 65% of original materials after 3 times of regeneration. Electrostatic attraction, precipitation, complexation, and ion exchange were the main adsorption mechanisms. The cation exchange capacity and total pore volume of modified CFs were key to determining qm of Cu(II) and Pb(II).


Subject(s)
Lead , Water Pollutants, Chemical , Temperature , Cations , Adsorption , Water , Clothing , Water Pollutants, Chemical/chemistry , Kinetics , Hydrogen-Ion Concentration
2.
J Environ Manage ; 321: 115970, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35969972

ABSTRACT

Plant litter causes a serious waste of resources. Thus, plant litter extract (LE) should be used in the soil remediation of heavy metals. In this study, different proportions of LE from the Alternanthera philoxeroides were used to modify dodecyl dimethyl betaine (BS)-modified purple soil (P). The basic physicochemical properties of LE + BS-modified Ps (LE + BS-Ps) were determined, and the microscopic morphology of LE + BS-Ps was studied by using scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy, and specific surface area detection. The isothermal adsorption characteristics of heavy metal ions (Pb2+, Cu2+, and Cr6+) on different LE + BS-Ps were investigated by the batch method, and the effect mechanisms of temperature, pH, ionic strength, and LE + BS-P's property were compared. Results showed that the cation exchange capacity and specific surface area of LE + BS-Ps increased, pH of LE + BS-Ps decreased, and TOC of LE + BS-Ps increased first and then decreased with increasing proportion of LE. FTIR, SEM, and EDS results proved that LE was modified on the surface of BS-P. Langmuir and Freundlich models could be used to describe the adsorption isotherms of heavy metal ions on different LE + BS-Ps, and the fitting correlation of the Langmuir model was higher than that of the Freundlich model. The maximum adsorption capacity (qm) of Pb2+, Cu2+, and Cr6+ were 107.60-295.66, 133.00-342.11, and 33.59-75.41 mmol/kg, respectively. The qm of Pb2+, Cu2+, and Cr6+ on LE + BS-Ps all increased first and then decreased with increasing proportion of LE, and the peak value was observed in 20%LE + BS-Ps. High pH improved Pb2+ and Cu2+ adsorption but inhibited Cr6+ adsorption. The adsorption amounts of Pb2+, Cu2+, and Cr6+ all increased first and then decreased with incresing ionic strength and were maintained at the maximum value of 0.1-0.2 mol/L. The Pb2+, Cu2+, and Cr6+ adsorption mechanisms on different LE + BS-Ps showed a positive temperature effect and presented spontaneous, exothermic and entropy-adding processes.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Adsorption , Hydrogen-Ion Concentration , Ions , Kinetics , Lead , Metals, Heavy/chemistry , Soil/chemistry , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/chemistry
3.
J Hazard Mater ; 182(1-3): 640-8, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20638175

ABSTRACT

Two extraction reagents, hydrochloric acid (HCl) and acid ammonium oxalate solution (Tamm's reagent), were used to evaluate the redox state of iron in municipal solid waste (MSW) with different deposit ages. Orthogonal experiments were conducted to optimize the extraction conditions for extractable iron speciation (ferric and ferrous) in MSW. The optimal extraction conditions for HCl were determined as follows: the liquid-to-solid ratio was set at 100, and then the samples were extracted at the shaking speed of 200 rpm at 35 degrees C for 60 min by 1.00 M HCl. For Tamm's reagent, the optimal extraction conditions were extracted at the shaking speed of 175 rpm at 30 degrees C for 12 h with the same liquid-to-solid ratio. However, Tamm's reagent extraction is much more laborious and time-consuming. Thus the HC1 extraction might be a better choice for the evaluation of the redox state of iron in MSW. The results also showed that the yield of extractable iron increased with deposited age. About 60-83% of extractable iron was presented as ferrous in the MSW deposited for 1-8 years. This study supplied a tool for investigating the role of iron on the fate of pollutants in the landfill.


Subject(s)
Ferrous Compounds/isolation & purification , Refuse Disposal , Ferrous Compounds/classification , Hydrochloric Acid/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...