Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123763, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38198994

ABSTRACT

In this work, we reported a fluorescent probe Fur-SH, a derivative of benzofuranone, which was used to detect H2S in living cells and zebrafish. Based on the three structural characteristics of the probe, the effects of different structural modifications on the optical properties of the fluorophore were compared. Then, the fluorophore Fur-OH was synthesized by modifying diethylamino group with benzofuranone as the main skeleton. With 2,4-dinitrofluorobenzene as the recognition group and diethylamino as the electron donor, the push-pull electron effect occurred with nitro group, which led to fluorescence quenching, and an openable fluorescent probe Fur-SH was formed. The probe Fur-SH (λex = 510 nm; λem = 570 nm) had the advantages of smaller full width at half maxima, rapid response (5 min) and wide pH window. The quantitative properties of the probe were excellent, reaching saturation at 50 equivalents of substrate. The probe Fur-SH showed high sensitivity to H2S, with LOD of 48.9 nM and LOQ of 50 nM. At present, the probe Fur-SH had been applied to fluorescence imaging of MCF-7 cells and zebrafish. By comparing the effects of different structures on the optical properties of fluorophores, this work was expected to be helpful to the development of fluorescent probes in the future.


Subject(s)
Fluorescent Dyes , Hydrogen Sulfide , Humans , Animals , Fluorescent Dyes/chemistry , Zebrafish , Hydrogen Sulfide/analysis , Mitochondria/chemistry , Optical Imaging , HeLa Cells
2.
Analyst ; 149(4): 1280-1288, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38226660

ABSTRACT

In this work, a fluorescent probe, TPABF-HS, was developed for detecting hydrogen sulfide (H2S) using a human serum albumin (HSA)-binding-based approach for amplifying the fluorescence signal and extending the linear correlation range. Compared to the most recent probes for H2S, the most interesting feature of the detection system developed herein was the especially wide linear range (0-1000 µM (0-100 eq.)), which covered the physiological and pathological levels of H2S. TPABF-HS could be used in applications high sensitivity and selectivity with an LOD value of 0.42 µM. Further, site-competition experiments and molecular docking simulation experiments indicated that signal amplification was realized by the binding of the TPABF fluorophore to the naproxen-binding site of HSA. Moreover, the extension of the measurement span could allow for applications in living cells and Caenorhabditis elegans for imaging both exogenous and endogenous H2S. This work brings new information to the strategy of signal processing by exploiting fluorescent probes.


Subject(s)
Fluorescent Dyes , Hydrogen Sulfide , Humans , Fluorescent Dyes/toxicity , Fluorescent Dyes/chemistry , Hydrogen Sulfide/chemistry , Molecular Docking Simulation , HeLa Cells , Microscopy, Fluorescence
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121635, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36007345

ABSTRACT

Cysteine (Cys), one of the biological thiols, which plays critical roles in biological system regulating the balance of redox homeostasis. In order to monitor the level of Cys in the living cells and organisms, a chromogenic fluorescence probe Rhocl-Cys based on Rhodamine chloride exhibiting the preferable performance of fluorescence turn-on response reacting with Cys was presented. Rhocl-Cys responded rapidly to Cys within 20 min, and had stable fluorescence intensity within pH 6.0-10.0, high selectivity towards Cys and the anti-inference capability with a low detection limit of 0.80 µM. In particular, Rhocl-Cys could qualitatively and quantitatively monitor the level of endogenous and exogenous Cys in living cells and successfully apply to zebrafish detecting Cys. Therefore, these results might further provide the basis exploring the role of Cys in biological system and facilitate as clinical diagnostic molecular tools.


Subject(s)
Cysteine , Zebrafish , Animals , Chlorides , Cysteine/chemistry , Fluorescent Dyes/chemistry , Glutathione/chemistry , HeLa Cells , Humans , Rhodamines
4.
Talanta ; 237: 122960, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34736685

ABSTRACT

H2S has been reported to play essential roles in a variety of physiological and pathological procedures. In this work, a novel fluorescent probe, Rho-HS, for detecting H2S was developed by introducing the ortho-halogen to activate the least reactive recognition group 2,4-dinitrophenyl moiety. In combination of the structures from both Rhodamine B and fluorescein, Rho-HS could generate both the colorimetric and fluorescent responses. This feature was not frequently achieved and could lead to the quantitative and convenient for the end-user. In comparison with recent probes for H2S, the major advantages of Rho-HS included suiting wide pH range (6.0-10.0), relatively rapid response (within 15 min) and the high selectivity among the competing species including the biothiols. With low cytoxicity, Rho-HS was further applied in the biological imaging in living MCF-7 cells and Caenorhabditis elegans. We hope that the designing strategy in this work might provide useful information for more preferable implements in this field.


Subject(s)
Hydrogen Sulfide , Xanthones , Fluorescein , Fluorescent Dyes , Optical Imaging
5.
Anal Chim Acta ; 1152: 338243, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33648638

ABSTRACT

Cysteine (Cys) is an indispensable small organic molecule containing sulfhydryl groups, which has essential regulatory effects on the physiological process of human body. In this work, a red emission fluorescent probe TCFQ-Cys was designed and exploited based on 2-(3-cyano-4,5,5-trimethylfuran-2(5H)-ylidene) malononitrile-derivatives. The probe could effectively monitor Cys through the typical acrylate cleavage. The detecting system showed a red emission at 633 nm and the fluorescence was stable within the pH range of 6-9. The detection could be completed in 30 min. TCFQ-Cys presented high sensitivity with a detection limit of 0.133 µM and high selectivity towards Cys from other biological mercaptans. The most important feature was that the system had a wide linear range of 0-300 µM, which covered the physiological requirements of Cys detection. Subsequently, we conducted the biological imaging of Cys in MCF-7 cells and Caenorhabditis elegans (C. elegans). Therefore, TCFQ-Cys had a practical application prospect for further investigating the physiological function of Cys.


Subject(s)
Cysteine , Fluorescent Dyes , Animals , Caenorhabditis elegans , HeLa Cells , Humans , Sulfhydryl Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...