Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Publication year range
1.
Microbiol Spectr ; : e0012224, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150249

ABSTRACT

Background emergence of multidrug-resistant (MDR) bacterial strains is a public health concern that threatens global and regional security. Efflux pump-overexpressing MDR strains from clinical isolates are the best subjects for studying the mechanisms of MDR caused by bacterial efflux pumps. A Klebsiella pneumoniae strain overexpressing the OqxB-only efflux pump was screened from a clinical strain library to explore reverse OqxB-mediated bacterial resistance strategies. We identified non-repetitive clinical isolated K. pneumoniae strains using a matrix-assisted laser desorption/ionization time-of-flight (TOF) mass spectrometry clinical TOF-II (Clin-TOF-II) and susceptibility test screening against levofloxacin and ciprofloxacin. And the polymorphism analysis was conducted using pulsed-field gel electrophoresis. Efflux pump function of resistant strains is obtained by combined drug sensitivity test of phenylalanine-arginine beta-naphthylamide (PaßN, an efflux pump inhibitor) and detection with ethidium bromide as an indicator. The quantitative reverse transcription PCR was performed to assess whether the oqxB gene was overexpressed in K. pneumoniae isolates. Additional analyses assessed whether the oqxB gene was overexpressed in K. pneumoniae isolates and gene knockout and complementation strains were constructed. The binding mode of PaßN with OqxB was determined using molecular docking modeling. Among the clinical quinolone-resistant K. pneumoniae strains, one mediates resistance almost exclusively through the overexpression of the resistance-nodulation-division efflux pump, OqxB. Crystal structure of OqxB has been reported recently by N. Bharatham, P. Bhowmik, M. Aoki, U. Okada et al. (Nat Commun 12:5400, 2021, https://doi.org/10.1038/s41467-021-25679-0). The discovery of this strain will contribute to a better understanding of the role of the OqxB transporter in K. pneumoniae and builds on the foundation for addressing the threat posed by quinolone resistance.IMPORTANCEThe emergence of antimicrobial resistance is a growing and significant health concern, particularly in the context of K. pneumoniae infections. The upregulation of efflux pump systems is a key factor that contributes to this resistance. Our results indicated that the K. pneumoniae strain GN 172867 exhibited a higher oqxB gene expression compared to the reference strain ATCC 43816. Deletion of oqxB led a decrease in the minimum inhibitory concentration of levofloxacin. Complementation with oqxB rescued antibiotic resistance in the oqxB mutant strain. We demonstrated that the overexpression of the OqxB efflux pump plays an important role in quinolone resistance. The discovery of strain GN 172867 will contribute to a better understanding of the role of the OqxB transporter in K. pneumoniae and promotes further study of antimicrobial resistance.

2.
Antimicrob Agents Chemother ; : e0034424, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39194261

ABSTRACT

Limited treatment options and multidrug-resistant (MDR) Klebsiella pneumoniae present a significant therapeutic challenge, underscoring the need for novel approaches. Drug repurposing is a promising tool for augmenting the activity of many antibiotics. This study aimed to identify novel synergistic drug combinations against K. pneumoniae based on drug repurposing. We used the clinically isolated GN 172867 MDR strain of K. pneumoniae to determine the reversal resistance activity of zidovudine (AZT). The combined effects of AZT and various antibiotics, including nitrofurantoin (NIT) and omadacycline (OMC), were examined using the checkerboard method, growth curves, and crystal violet assays to assess biofilms. An in vitro combination activity testing was carried out in 12 isolates of K. pneumoniae. In vivo murine urinary tract and lung infection models were used to evaluate the therapeutic effects of AZT + NIT and AZT + OMC, respectively. The fractional inhibitory concentration index and growth curve demonstrated that AZT synergized with NIT or OMC against K. pneumoniae strains. In addition, AZT + NIT inhibited biofilm formation and cleared mature biofilms. In vivo, compared with untreated GN 172867-infected mice, AZT + NIT and AZT + OMC treatment decreased colony counts in multiple tissues (P < 0.05) and pathological scores in the bladder and kidneys (P < 0.05) and increased the survival rate by 60% (P < 0.05). This study evaluated the combination of AZT and antibiotics to treat drug-resistant K. pneumoniae infections and found novel drug combinations for the treatment of acute urinary tract infections. These findings suggest that AZT may exert significant anti-resistance activity.

3.
Yao Xue Xue Bao ; 42(2): 118-26, 2007 Feb.
Article in Chinese | MEDLINE | ID: mdl-17518037

ABSTRACT

Homoisoflavonoid is a special type in flavonoids. There are more than 110 homoisoflavonoid compounds isolated from natural materials. Homoisoflavonoid compounds show many bioactivities on anti-inflammatory, estrogenicy, antiestrogenic, anticancer and angioprotective etc. This paper summarized the plant sources, structural types spectrocopy features and the biology activities of homoisoflavonoids.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antimutagenic Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Isoflavones/chemistry , Isoflavones/isolation & purification , Plants, Medicinal/chemistry , Animals , Humans , Isoflavones/pharmacology , Magnetic Resonance Spectroscopy , Molecular Structure , Vasodilator Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL