Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 15: 1355169, 2024.
Article in English | MEDLINE | ID: mdl-38533257

ABSTRACT

Introduction: Ischemic stroke (IS) is a detrimental neurological disease with limited treatment options. Recanalization of blocked blood vessels and restoring blood supply to ischemic brain tissue are crucial for post-stroke rehabilitation. The decoction Naodesheng (NDS) composed of five Chinese botanical drugs, including Panax notoginseng (Burk.) F. H. Chen, Ligusticum chuanxiong Hort., Carthamus tinctorius L., Pueraria lobata (Willd.) Ohwi, and Crataegus pinnatifida Bge., is a blood-activating and stasis-removing herbal medicine commonly used for the clinical treatment of cerebrovascular diseases in China. However, the material basis of NDS on the effects of blood circulation improvement and vascular tone regulation remains unclear. Methods: A database comprising 777 chemical metabolites of NDS was constructed. Then, the interactions between various herbal metabolites of NDS and five vascular tone modulation G-protein-coupled receptors (GPCRs), including 5-HT1AR, 5-HT1BR, ß2-AR, AT1R, and ETBR, were assessed by molecular docking. Using network analysis and vasomotor experiment of the cerebral basilar artery, the potential material basis underlying the vascular regulatory effects of NDS was further explored. Results: The Naodesheng Effective Component Group (NECG) was found to induce relaxation of rat basilar artery rings precontracted using Endothelin-1 (ET-1) and KCl in vitro in a dose-dependent manner. Several metabolites of NDS, including C. tinctorius, C. pinnatifida, and P. notoginseng, were found to be the main plant resources of metabolites with high docking scores. Furthermore, several metabolites in NDS, including formononetin-7-glucoside, hydroxybenzoyl-coumaric anhydride, methoxymecambridine, puerarol, and pyrethrin II, were found to target multiple vascular GPCRs. Metabolites with moderate-to-high binding energy were verified to have good rat basilar artery-relaxing effects, and the maximum artery relaxation effects of all three metabolites, namely, isorhamnetin, kaempferol, and daidzein, were found to exceed 90%. Moreover, metabolites of NDS were found to exert a synergistic effect by interacting with vascular GPCR targets, and these metabolites may contribute to the cerebrovascular regulatory function of NDS. Discussion: The study reports that various metabolites of NDS contribute to its vascular tone regulating effects and demonstrates the multi-component and multi-target characteristics of NDS. Among them, metabolites with moderate-to-high binding scores in NDS may play an important role in regulating vascular function.

2.
Molecules ; 28(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37110564

ABSTRACT

Eucommia ulmoides gum (EUG) is a natural polymer predominantly consisting of trans-1,4-polyisoprene. Due to its excellent crystallization efficiency and rubber-plastic duality, EUG finds applications in various fields, including medical equipment, national defense, and civil industry. Here, we devised a portable pyrolysis-membrane inlet mass spectrometry (PY-MIMS) approach to rapidly, accurately, and quantitatively identify rubber content in Eucommia ulmoides (EU). EUG is first introduced into the pyrolyzer and pyrolyzed into tiny molecules, which are then dissolved and diffusively transported via the polydimethylsiloxane (PDMS) membrane before entering the quadrupole mass spectrometer for quantitative analysis. The results indicate that the limit of detection (LOD) for EUG is 1.36 µg/mg, and the recovery rate ranges from 95.04% to 104.96%. Compared to the result of pyrolysis-gas chromatography (PY-GC), the average relative error is 1.153%, and the detection time was reduced to less than 5 min, demonstrating that the procedure was reliable, accurate, and efficient. The method has the potential to be employed to precisely identify the rubber content of natural rubber-producing plants such as Eucommia ulmoides, Taraxacum kok-saghyz (TKS), Guayule, and Thorn lettuce.


Subject(s)
Eucommiaceae , Rubber , Eucommiaceae/chemistry , Bays , Pyrolysis , Gas Chromatography-Mass Spectrometry
3.
Front Endocrinol (Lausanne) ; 12: 646720, 2021.
Article in English | MEDLINE | ID: mdl-34322090

ABSTRACT

We have previously shown that biochanin A exhibits neuroprotective properties in the context of cerebral ischemia/reperfusion (I/R) injury. The mechanistic basis for such properties, however, remains poorly understood. This study was therefore designed to explore the manner whereby biochanin A controls endoplasmic reticulum (ER) stress, apoptosis, and inflammation within fetal rat primary cortical neurons in response to oxygen-glucose deprivation/reoxygenation (OGD/R) injury, and in a rat model of middle cerebral artery occlusion and reperfusion (MCAO/R) injury. For the OGD/R in vitro model system, cells were evaluated after a 2 h OGD following a 24 h reoxygenation period, whereas in vivo neurological deficits were evaluated following 2 h of ischemia and 24 h of reperfusion. The expression of proteins associated with apoptosis, ER stress (ERS), and p38 MAPK phosphorylation was evaluated in these samples. Rats treated with biochanin A exhibited reduced neurological deficits relative to control rats following MCAO/R injury. Additionally, GRP78 and CHOP levels rose following I/R modeling both in vitro and in vivo, whereas biochanin A treatment was associated with reductions in CHOP levels but further increases in GRP78 levels. In addition, OGD/R or MCAO/R were associated with markedly enhanced p38 MAPK phosphorylation that was alleviated by biochanin A treatment. Similarly, OGD/R or MCAO/R injury resulted in increases in caspase-3, caspase-12, and Bax levels as well as decreases in Bcl-2 levels, whereas biochanin A treatment was sufficient to reverse these phenotypes. Together, these findings thus demonstrate that biochanin A can alleviate cerebral I/R-induced damage at least in part via suppressing apoptosis, ER stress, and p38 MAPK signaling, thereby serving as a potent neuroprotective agent.


Subject(s)
Brain Ischemia/drug therapy , Endoplasmic Reticulum Stress/drug effects , Genistein/pharmacology , Reperfusion Injury/drug therapy , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Apoptosis , Brain/metabolism , Cell Proliferation , Cell Survival , Female , Genistein/chemistry , Glucose/metabolism , Humans , In Vitro Techniques , Infarction, Middle Cerebral Artery/metabolism , Male , Oxygen/metabolism , Phosphorylation , Rats , Rats, Sprague-Dawley , Signal Transduction
4.
Phys Chem Chem Phys ; 22(36): 20362-20367, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32901630

ABSTRACT

The typical electron-deficiency of the boron element renders fascinating architectures and chemical bonding to boron-based nanoclusters. We theoretically predict two di-Ca-doped boron clusters, B6Ca2 (D2h, 1Ag) and B8Ca2 (D8h, 1A1g), and both adopt interesting inverse sandwich geometries, showing an elongated D2h B6 or perfectly planar D8h B8 ring being sandwiched by two Ca atoms only, respectively. Natural atomic charge analyses indicate that the Ca atoms donate nearly all the 4s electrons to the B6 (or B8) ring, forming [Ca]2+[B6]4-[Ca]2+ and [Ca]2+[B8]4-[Ca]2+ charge transfer complexes. The interaction between the two Ca atoms and the boron rings is governed by robust electrostatics albeit by weaker B-Ca covalent interaction. Chemical bonding analyses show that B6Ca2 has 4σ and 6π delocalized electrons on the elongated B6 ring, leading to a conflicting aromatic system. B8Ca2, possessing 6σ and 6π delocalized electrons on the B8 ring, is doubly aromatic. Additionally, the B6Ca2 and B8Ca2 clusters show noticeable structural and electronic transmutation relative to their equivalent electronic B6Be2 and B8Mg2 clusters, respectively. The intrinsic reasons behind the transmutations are elucidated via in-depth bonding analyses.

5.
Med Sci Monit ; 25: 8975-8983, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31767824

ABSTRACT

BACKGROUND Oxidative stress and neuroinflammation are 2 pivotal mechanisms in the progression of cerebral ischemia/reperfusion injury. Biochanin A, a natural phytoestrogen, has been reported to protect against ischemic brain injury in animal experiments, but the possible pharmacological mechanisms of its neuroprotection remain elusive. In this research, we sought to investigate the neuroprotective effects of biochanin A in experimental stroke rats and the probable mechanisms underlying oxidative stress and inflammation signaling pathways. MATERIAL AND METHODS An ischemic stroke model was induced by inserting thread into the middle cerebral artery. Rats were pre-administered intraperitoneally with a vehicle solution or biochanin A (10, 20, or 40 mg·kg·d--⁻¹) for 14 days prior to ischemic stroke. Neurological score, infarct volume, and cerebral edema were assessed after 2 h of ischemia and 24 h of reperfusion. The activities of SOD and GSH-Px and MDA content were measured. The expressions of Nrf2, HO-1, and NF-kappaB and the activity of phosphor-IkappaBalpha were detected by Western blotting. RESULTS Biochanin A pretreatment significantly improved neurological deficit and decreased infarct size and brain edema. Biochanin A also enhanced SOD and GSH-Px activities and suppressed the production of MDA. Additionally, biochanin A promoted Nrf2 nuclear translocation, promoted the expression of HO-1, and inhibited NF-kappaB activation in ischemic brain injury. CONCLUSIONS The results indicated that biochanin A protected the brain against ischemic injury in rats by anti-oxidative and anti-inflammatory actions. The activation of the Nrf2 pathway and the inhibition of the NF-kappaB pathway may contribute to the neuroprotective effects of biochanin A.


Subject(s)
Genistein/pharmacology , Reperfusion Injury/drug therapy , Animals , Antioxidants/pharmacology , Brain/metabolism , Brain Edema/drug therapy , Brain Ischemia/drug therapy , Gene Expression Regulation/drug effects , Genistein/metabolism , Infarction, Middle Cerebral Artery/metabolism , Inflammation/metabolism , Male , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/physiology , NF-kappa B/metabolism , Neuroprotection/drug effects , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Stroke/metabolism
6.
Chin J Integr Med ; 24(7): 531-536, 2018 Jul.
Article in English | MEDLINE | ID: mdl-28028714

ABSTRACT

OBJECTIVE: To reveal the force mechanism for therapeutic effect of pushing manipulation with one-finger meditation. METHODS: A total of 15 participants were recruited in this study and assigned to an expert group, a skilled group and a novice group, with 5 participants in each group. Mechanical signals were collected from a biomechanical testing platform, and these data were further observed via similarity analysis and cluster analysis. RESULTS: Comparing the force waveforms of manipulation revealed that the manipulation forces were similar between the expert group and the skilled group (P>0.05). The mean value of vertical force was 9.8 N, and 95% CI rang from 6.37 to 14.70 N, but there were significant differences compared with the novice group (P<0.05). The result of overall similarity coefficient cluster analysis showed that two kinds of manipulation forces curves were existed between the expert group and the skilled group. CONCLUSION: Pushing manipulation with one-finger meditation is a kind of light stimulation manipulation on the acupoint, and force characteristics of double waveforms continuously alternated during manual operation.


Subject(s)
Biomechanical Phenomena/physiology , Fingers/physiology , Hand Strength/physiology , Massage/methods , Medicine, Chinese Traditional/methods , Meditation/methods , Musculoskeletal Manipulations/methods , Acupuncture Points , Clinical Competence , Humans , Individuality , Massage/education , Models, Theoretical , Musculoskeletal Manipulations/education , Musculoskeletal Manipulations/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...