Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(38): e2310163120, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37703282

ABSTRACT

Callus is a reprogrammed cell mass involved in plant regeneration and gene transformation in crop engineering. Pluripotent callus cells develop into fertile shoots through shoot regeneration. The molecular basis of the shoot regeneration process in crop callus remains largely elusive. This study pioneers the exploration of the spatial transcriptome of tomato callus during shoot regeneration. The findings reveal the presence of highly heterogeneous cell populations within the callus, including epidermis, vascular tissue, shoot primordia, inner callus, and outgrowth shoots. By characterizing the spatially resolved molecular features of shoot primordia and surrounding cells, specific factors essential for shoot primordia formation are identified. Notably, chlorenchyma cells, enriched in photosynthesis-related processes, play a crucial role in promoting shoot primordia formation and subsequent shoot regeneration. Light is shown to promote shoot regeneration by inducing chlorenchyma cell development and coordinating sugar signaling. These findings significantly advance our understanding of the cellular and molecular aspects of shoot regeneration in tomato callus and demonstrate the immense potential of spatial transcriptomics in plant biology.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , Transcriptome , Epithelial Cells , Gene Expression Profiling , Regeneration/genetics
2.
Front Plant Sci ; 12: 788996, 2021.
Article in English | MEDLINE | ID: mdl-34938309

ABSTRACT

Leaf senescence is the last stage of leaf development and is an orderly biological process accompanied by degradation of macromolecules and nutrient recycling, which contributes to plant fitness. Forward genetic mutant screening and reverse genetic studies of senescence-associated genes (SAGs) have revealed that leaf senescence is a genetically regulated process, and the initiation and progression of leaf senescence are influenced by an array of internal and external factors. Recently, multi-omics techniques have revealed that leaf senescence is subjected to multiple layers of regulation, including chromatin, transcriptional and post-transcriptional, as well as translational and post-translational levels. Although impressive progress has been made in plant senescence research, especially the identification and functional analysis of a large number of SAGs in crop plants, we still have not unraveled the mystery of plant senescence, and there are some urgent scientific questions in this field, such as when plant senescence is initiated and how senescence signals are transmitted. This paper reviews recent advances in the multiple layers of regulation on leaf senescence, especially in post-transcriptional regulation such as alternative splicing.

3.
Plant Cell ; 32(3): 612-629, 2020 03.
Article in English | MEDLINE | ID: mdl-31888966

ABSTRACT

Salicylic acid (SA) and ethylene (ET) are important phytohormones that regulate numerous plant growth, development, and stress response processes. Previous studies have suggested functional interplay of SA and ET in defense responses, but precisely how these two hormones coregulate plant growth and development processes remains unclear. Our present work reveals antagonism between SA and ET in apical hook formation, which ensures successful soil emergence of etiolated dicotyledonous seedlings. Exogenous SA inhibited ET-induced expression of HOOKLESS1 (HLS1) in Arabidopsis (Arabidopsis thaliana) in a manner dependent on ETHYLENE INSENSITIVE3 (EIN3) and EIN3-LIKE1 (EIL1), the core transcription factors in the ET signaling pathway. SA-activated NONEXPRESSER OF PR GENES1 (NPR1) physically interacted with EIN3 and interfered with the binding of EIN3 to target gene promoters, including the HLS1 promoter. Transcriptomic analysis revealed that NPR1 and EIN3/EIL1 coordinately regulated subsets of genes that mediate plant growth and stress responses, suggesting that the interaction between NPR1 and EIN3/EIL1 is an important mechanism for integrating the SA and ET signaling pathways in multiple physiological processes. Taken together, our findings illuminate the molecular mechanism underlying SA regulation of apical hook formation as well as the antagonism between SA and ET in early seedling establishment and possibly other physiological processes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , DNA-Binding Proteins/metabolism , Hypocotyl/growth & development , Salicylic Acid/pharmacology , Transcription Factors/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Hypocotyl/drug effects , Models, Biological , Promoter Regions, Genetic , Protein Binding/drug effects , Protein Domains , Transcription, Genetic/drug effects
4.
Plant Cell ; 29(11): 2854-2870, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29061866

ABSTRACT

Leaf senescence is a highly coordinated, complicated process involving the integration of numerous internal and environmental signals. Salicylic acid (SA) and reactive oxygen species (ROS) are two well-defined inducers of leaf senescence whose contents progressively and interdependently increase during leaf senescence via an unknown mechanism. Here, we characterized the transcription factor WRKY75 as a positive regulator of leaf senescence in Arabidopsis thaliana. Knockdown or knockout of WRKY75 delayed age-dependent leaf senescence, while overexpression of WRKY75 accelerated this process. WRKY75 transcription is induced by age, SA, H2O2, and multiple plant hormones. Meanwhile, WRKY75 promotes SA production by inducing the transcription of SA INDUCTION-DEFICIENT2 (SID2) and suppresses H2O2 scavenging, partly by repressing the transcription of CATALASE2 (CAT2). Genetic analysis revealed that the mutation of SID2 or an increase in catalase activity rescued the precocious leaf senescence phenotype evoked by WRKY75 overexpression. Based on these results, we propose a tripartite amplification loop model in which WRKY75, SA, and ROS undergo a gradual but self-sustained rise driven by three interlinking positive feedback loops. This tripartite amplification loop provides a molecular framework connecting upstream signals, such as age and plant hormones, to the downstream regulatory network executed by SA- and H2O2-responsive transcription factors during leaf senescence.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Plant Leaves/genetics , Reactive Oxygen Species/metabolism , Salicylic Acid/metabolism , Transcription Factors/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Amplification/drug effects , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Plant/drug effects , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Mutation , Oxidants/metabolism , Oxidants/pharmacology , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Leaves/growth & development , Plant Leaves/metabolism , Plants, Genetically Modified , RNA Interference , Salicylic Acid/pharmacology , Time Factors , Transcription Factors/metabolism
5.
Biophys J ; 104(7): 1435-44, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23561520

ABSTRACT

Dimerization of the transmembrane (TM) adaptor protein DAP12 plays a key role in mediating activation signals through TM-TM association with cell-surface receptors. Herein, we apply the TOXCAT assay and molecular dynamics simulation to analyze dynamics and dimerization of the TM helix of DAP12 in the membrane bilayer. In the TOXCAT assay, we performed site-specific mutagenesis of potential dimerization motifs in the DAP12 TM domain. Instead of the common GxxxG dimerization motif, mutating either of the polar residues Asp-50 and Thr-54 significantly decreased the TOXCAT signal for the dimerization of DAP12 TM domain. Furthermore, through the conformational difference between wild-type and mutant DAP12 TM homodimers, a combined coarse-grained and atomistic molecular dynamics simulation has identified both Asp-50 and Thr-54 at the dimerization interface. The experimental and computational results of the DAP12 TM dimer are in excellent agreement with the previously reported NMR structure obtained in detergent micelles. Such a combination of dynamics simulation and cell-based experiments can be applied to produce insights at the molecular level into the TM-TM association of many other transmembrane proteins.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Cell Membrane/metabolism , Lipid Bilayers/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Molecular Dynamics Simulation , Protein Multimerization , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Sequence , Humans , Membrane Proteins/genetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Protein Structure, Quaternary , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL