Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmgenomics Pers Med ; 17: 77-89, 2024.
Article in English | MEDLINE | ID: mdl-38562431

ABSTRACT

Purpose: This study aimed to examine the frequencies of mt-tRNAGlu variants in 180 pediatric patients with non-syndromic hearing loss (NSHL) and 100 controls. Methods: Sanger sequencing was performed to screen for mt-tRNAGlu variants. These mitochondrial DNA (mtDNA) pathogenic mutations were further assessed using phylogenetic conservation and haplogroup analyses. We also traced the origins of the family history of probands carrying potential pathogenic mtDNA mutations. Mitochondrial functions including mtDNA content, ATP and reactive oxygen species (ROS) were examined in cells derived from patients carrying the mt-tRNAGlu A14692G and CO1/tRNASer(UCN) G7444A variants and controls. Results: We identified four possible pathogenic variants: m.T14709C, m.A14683G, m.A14692G and m.A14693G, which were found in NSHL patients but not in controls. Genetic counseling suggested that one child with the m.A14692G variant had a family history of NSHL. Sequence analysis of mtDNA suggested the presence of the CO1/tRNASer(UCN) G7444A and mt-tRNAGlu A14692G variants. Molecular analysis suggested that, compared with the controls, patients with these variants exhibited much lower mtDNA copy numbers, ATP production, whereas ROS levels increased (p<0.05 for all), suggesting that the m.A14692G and m.G7444A variants led to mitochondrial dysfunction. Conclusion: mt-tRNAGlu variants are important risk factors for NSHL.


The main aim of our study was to explore the association between the mt-tRNAGlu variants and hearing loss. We found that m.T14709C, m.A14683G, m.A14692G and m.A14693G variants were associated with hearing impairments, these variants localized at extremely conserved nucleotides of mt-tRNAGlu and may result a failure in tRNA metabolism, furthermore, patients with mt-tRNAGlu variants exhibited much lower levels of mtDNA copy number, ATP as compared with controls, whereas ROS increased. As a result, mt-tRNAGlu variants may serve as biomarkers for mitochondrial deafness, and screening for tRNAGlu variants is recommended for early detection and diagnosis of mitochondrial deafness.

2.
Biomolecules ; 13(6)2023 05 30.
Article in English | MEDLINE | ID: mdl-37371486

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a common endocrine disorder which remains a large challenge for clinicians. Previous studies have suggested that mitochondrial dysfunction plays an active role in T2DM progression, but a detailed mechanism is still elusive. In the current study, two Han Chinese families with maternally inherited T2DM were evaluated using clinical, genetic, molecular, and biochemical analyses. The mitochondrial genomes were PCR amplified and sequenced. Phylogenetic and bioinformatic analyses were used to assess the potential pathogenicity of mitochondrial DNA (mtDNA) mutations. Interestingly, the matrilineal relatives of these pedigrees exhibited variable severity of T2DM, in particular, the age at onset of T2DM varied from 26 to 65 years, with an average of 49 years. Sequence analysis revealed the presence of ND4 G11696A mutation, which resulted in the substitution of an isoleucine for valine at amino acid (AA) position 312. Indeed, this mutation was present in homoplasmy only in the maternal lineage, not in other members of these families, as well as 200 controls. Furthermore, the m.C5601T in the tRNAAla and novel m.T5813C in the tRNACys, showing high evolutional conservation, may contribute to the phenotypic expression of ND4 G11696A mutation. In addition, biochemical analysis revealed that cells with ND4 G11696A mutation exhibited higher levels of reactive oxygen species (ROS) productions than the controls. In contrast, the levels of mitochondrial membrane potential (MMP), ATP, mtDNA copy number (mtDNA-CN), Complex I activity, and NAD+/NADH ratio significantly decreased in cell lines carrying the m.G11696A and tRNA mutations, suggesting that these mutations affected the respiratory chain function and led to mitochondrial dysfunction that was involved in T2DM. Thus, our study broadened the clinical phenotypes of m.G11696A mutation.


Subject(s)
DNA, Mitochondrial , Diabetes Mellitus, Type 2 , Mitochondria , NADH Dehydrogenase , Adult , Aged , Humans , Middle Aged , Diabetes Mellitus, Type 2/genetics , DNA, Mitochondrial/genetics , Mitochondria/genetics , Mutation , NADH Dehydrogenase/genetics , Phylogeny
3.
Genes (Basel) ; 13(10)2022 10 05.
Article in English | MEDLINE | ID: mdl-36292680

ABSTRACT

The mitochondrial 1555A>G mutation plays a critical role in aminoglycoside-induced and non-syndromic hearing loss (AINSHL). Previous studies have suggested that mitochondrial secondary variants may modulate the clinical expression of m.1555A>G-induced deafness, but the molecular mechanism has remained largely undetermined. In this study, we investigated the contribution of a deafness-associated tRNAGln 4394C>T mutation to the clinical expression of the m.1555A>G mutation. Interestingly, a three-generation family with both the m.1555A>G and m.4394C>T mutations exhibited a higher penetrance of hearing loss than another family harboring only the m.1555A>G mutation. At the molecular level, the m.4394C>T mutation resides within a very conserved nucleotide of tRNAGln, which forms a new base-pairing (7T-66A) and may affect tRNA structure and function. Using trans-mitochondrial cybrid cells derived from three subjects with both the m.1555A>G and m.4394C>T mutations, three patients with only the m.1555A>G mutation and three control subjects without these primary mutations, we observed that cells with both the m.1555A>G and m.4394C>T mutations exhibited more severely impaired mitochondrial functions than those with only the m.1555A>G mutation. Furthermore, a marked decrease in mitochondrial RNA transcripts and respiratory chain enzymes was observed in cells harboring both the m.1555A>G and m.4394C>T mutations. Thus, our data suggest that the m.4394C>T mutation may play a synergistic role in the m.1555A>G mutation, enhancing mitochondrial dysfunctions and contributing to a high penetrance of hearing loss in families with both mtDNA pathogenic mutations.


Subject(s)
Deafness , Hearing Loss , Humans , RNA, Mitochondrial , RNA, Transfer, Gln , Deafness/chemically induced , Deafness/genetics , Mutation , Hearing Loss/chemically induced , Hearing Loss/genetics , Aminoglycosides , DNA, Mitochondrial/genetics , Nucleotides/adverse effects
4.
Diabetes Metab Syndr Obes ; 15: 1687-1701, 2022.
Article in English | MEDLINE | ID: mdl-35685248

ABSTRACT

Background: Mutations in mitochondrial DNA (mtDNA) are associated with type 2 diabetes mellitus (T2DM). In particular, m.A3243G is the most common T2DM-related mtDNA mutation in many families worldwide. However, the clinical features and pathophysiology of m.A3243G-induced T2DM are largely undefined. Methods: Two pedigrees with maternally inherited T2DM were underwent clinical, molecular and biochemical assessments. The mtDNA genes were PCR amplified and sequenced. Mitochondrial adenosine triphosphate (ATP) and reactive oxygen species (ROS) were measured in polymononuclear leukocytes derived from three patients with both the m.A3243G and m.T14502C mutations, three patients with only the m.A3243G mutation and three controls without these mutations. Moreover, GJB2, GJB3 and GJB6 mutations were screened by PCR-Sanger sequencing. Results: Members of the two pedigrees manifestated variable clinical phenotypes including diabetes and hearing and vision impairments. The age at onset of T2DM varied from 31 to 66 years, with an average of 41 years. Mutational analysis of mitochondrial genomes indicated the presence of the m.A3243G mutation in both pedigrees. Matrilineal relatives in one of the pedigrees harbored the coexisting of m.A3243G and m.T14502C mutations. Remarkably, the m.T14502C mutation, which causes the substitution of a conserved isoleucine for valine at position 58 in ND6 mRNA, may affect the mitochondrial respiratory chain functions. Biochemical analysis revealed that cell lines bearing both the m.A3243G and m.T14502C mutations exhibited greater reductions in ATP levels and increased ROS production compared with those carrying only the m.A3243G mutation. However, we did not find any mutations in the GJB2, GJB3 and GJB6 genes. Conclusion: Our study indicated that mitochondrial diabetes is associated with the tRNALeu(UUR) A3243G and ND6 T14502C mutations.

5.
J Clin Lab Anal ; 36(1): e24102, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34811812

ABSTRACT

BACKGROUND: Mitochondrial dysfunctions caused by mitochondrial DNA (mtDNA) pathogenic mutations play putative roles in type 2 diabetes mellitus (T2DM) progression. But the underlying mechanism remains poorly understood. METHODS: A large Chinese family with maternally inherited diabetes and deafness (MIDD) underwent clinical, genetic, and molecular assessment. PCR and sequence analysis are carried out to detect mtDNA variants in affected family members, in addition, phylogenetic conservation analysis, haplogroup classification, and pathogenicity scoring system are performed. Moreover, the GJB2, GJB3, GJB6, and TRMU genes mutations are screened by PCR-Sanger sequencing. RESULTS: Six of 18 matrilineal subjects manifested different clinical phenotypes of diabetes. The average age at onset of diabetic patients is 52 years. Screening for the entire mitochondrial genomes suggests the co-existence of two possibly pathogenic mutations: tRNATrp A5514G and tRNASer(AGY) C12237T, which belongs to East Asia haplogroup G2a. By molecular level, m.A5514G mutation resides at acceptor stem of tRNATrp (position 3), which is critical for steady-state level of tRNATrp . Conversely, m.C12237T mutation occurs in the variable region of tRNASer(AGY) (position 31), which creates a novel base-pairing (11A-31T). Thus, the mitochondrial dysfunctions caused by tRNATrp A5514G and tRNASer(AGY) C12237T mutations, may be associated with T2DM in this pedigree. But we do not find any functional mutations in those nuclear genes. CONCLUSION: Our findings suggest that m.A5514G and m.C12337T mutations are associated with T2DM, screening for mt-tRNA mutations is useful for molecular diagnosis and prevention of mitochondrial diabetes.


Subject(s)
DNA, Mitochondrial/genetics , Deafness/genetics , Diabetes Mellitus, Type 2/genetics , Mitochondrial Diseases/genetics , Mutation/genetics , RNA, Transfer/genetics , Adult , Animals , Female , Humans , Male , Middle Aged , Pedigree
6.
PeerJ ; 9: e10651, 2021.
Article in English | MEDLINE | ID: mdl-33552719

ABSTRACT

Leber's Hereditary Optic Neuropathy (LHON) was a common maternally inherited disease causing severe and permanent visual loss which mostly affects males. Three primary mitochondrial DNA (mtDNA) mutations, ND1 3460G>A, ND4 11778G>A and ND6 14484T>C, which affect genes encoding respiratory chain complex I subunit, are responsible for >90% of LHON cases worldwide. Families with maternally transmitted LHON show incomplete penetrance with a male preponderance for visual loss, suggesting the involvement of secondary mtDNA variants and other modifying factors. In particular, variants in mitochondrial tRNA (mt-tRNA) are important risk factors for LHON. These variants decreased the tRNA stability, prevent tRNA aminoacylation, influence the post-transcriptionalmodification and affect tRNA maturation. Failure of mt-tRNA metabolism subsequently impairs protein synthesis and expression, folding, and function of oxidative phosphorylation (OXPHOS) enzymes, which aggravates mitochondrial dysfunction that is involved in the progression and pathogenesis of LHON. This review summarizes the recent advances in our understanding of mt-tRNA biology and function, as well as the reported LHON-related mt-tRNA second variants; it also discusses the molecular mechanism behind the involvement of these variants in LHON.

7.
J Gene Med ; 23(4): e3328, 2021 04.
Article in English | MEDLINE | ID: mdl-33625761

ABSTRACT

BACKGROUND: Mutations in mitochondrial tRNA (mt-tRNA) genes are associated with hypertension, although their pathogenic mechanisms remain poorly understood. METHODS: In the present study, two Han Chinese families with maternally transmitted hypertension were interviewed. The mtDNA mutations of matrilineal relatives were screened by polymerase chain reaction-Sanger sequencing. Mitochondrial ATP, membrane potential and reactive oxygen species (ROS) were also analyzed in polymononuclear leukocytes carrying these mt-tRNA mutations. Additionally, the levels of oxidative stress-related biomarkers [malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and 8-hydroxy-2-deoxyguanosine (8-OHdG)] were analyzed. RESULTS: Nine of 13 adult matrilineal relatives of these pedigrees exhibited a wide range of severity of hypertension. The age at onset of hypertension was 30-62 years (average 46 years). Mutational screening of mitochondrial genomes revealed tRNAArg T10410C and T10454C mutations. Indeed, the m.T10454C and m.T10410C mutations occurred at conserved bases of TΨC-loop and acceptor arm of tRNAArg (positions 55 and 6), which are critical for tRNAArg post-transcriptional modification. Thus, the defects in tRNA modification may cause failure in tRNA metabolism, impairing mitochondrial translation. Biochemical analysis revealed that m.T10454C or m.T10410C mutation significantly reduced mitochondrial ATP and membrane potential and also increased ROS production in mutant cell lines (all p < 0.05). In addition, the levels of MDA and 8-OHdG in hypertensive patients markedly increased, whereas those of SOD and GSH-Px decreased (all p < 0.05). CONCLUSIONS: These findings demonstrate that m.T10410C and m.T10454C mutations affect the structure and function of tRNAArg and consequently alter mitochondrial function and lead to oxidative stress, which are involved in the pathogenesis of maternally inherited hypertension.


Subject(s)
Genetic Predisposition to Disease , Hypertension/genetics , Maternal Inheritance/genetics , RNA, Transfer/genetics , Adenosine Triphosphate/genetics , Adult , Aged , Female , Genome, Mitochondrial , Glutathione Peroxidase/blood , Humans , Hypertension/blood , Hypertension/epidemiology , Hypertension/pathology , Male , Malondialdehyde/blood , Membrane Potential, Mitochondrial/genetics , Middle Aged , Mutation/genetics , Oxidative Stress/genetics , Pedigree , Reactive Oxygen Species , Superoxide Dismutase/blood
8.
Clin Lab ; 64(1): 197-200, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29479880

ABSTRACT

BACKGROUND: Lesch-Nyhan syndrome (LNS) is a congenital X-linked recessive neurogenetic disorder caused by mutations in the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene. The main clinical manifestation includes hyperuricemia, juvenile-onset gouty arthritis, and neurological developmental disorders. Studies have reported more than 400 HPRT gene mutation sites, but the incidence of LNS in the Chinese population is extremely low. METHODS: Here we report a 16-year-old male patient who suffered neurological dysfunction at an early age and gouty arthritis in his youth. RESULTS: No activity of the HPRT enzyme was detected in the erythrocytes. Furthermore, we found a mutation on exon 3 of the HPRT gene in the patient and his mother (exon 3: c.143G>A), which resulted in arginine to histidine (p.R48H) substitution in the encoded protein. The same mutation was reported in several European families, but was found for the first time in a Chinese family. CONCLUSIONS: Clinicians in China have poor experience in diagnosing LNS cases due to the low incidence in China. Therefore, LNS screening for infants or adolescents with hyperuricemia, gouty arthritis, and neurological dysfunction should be performed.


Subject(s)
Exons/genetics , Hypoxanthine Phosphoribosyltransferase/genetics , Lesch-Nyhan Syndrome/genetics , Mutation , Adolescent , Arthritis, Gouty/enzymology , Arthritis, Gouty/genetics , Asian People/genetics , Base Sequence , China , Family Health , Humans , Lesch-Nyhan Syndrome/diagnosis , Lesch-Nyhan Syndrome/ethnology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...