Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Sci Adv ; 8(41): eabo5224, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36223471

ABSTRACT

Despite abundant research demonstrating that platelets can promote tumor cell metastasis, whether primary tumors affect platelet-producing megakaryocytes remains understudied. In this study, we used a spontaneous murine model of breast cancer to show that tumor burden reduced megakaryocyte number and size and disrupted polyploidization. Single-cell RNA sequencing demonstrated that megakaryocytes from tumor-bearing mice exhibit a pro-inflammatory phenotype, epitomized by increased Ctsg, Lcn2, S100a8, and S100a9 transcripts. Protein S100A8/A9 and lipocalin-2 levels were also increased in platelets, suggesting that tumor-induced alterations to megakaryocytes are passed on to their platelet progeny, which promoted in vitro tumor cell invasion and tumor cell lung colonization to a greater extent than platelets from wild-type animals. Our study is the first to demonstrate breast cancer-induced alterations in megakaryocytes, leading to qualitative changes in platelet content that may feedback to promote tumor metastasis.


Subject(s)
Megakaryocytes , Neoplasms , Animals , Blood Platelets/metabolism , Cathepsin G/metabolism , Disease Models, Animal , Gene Expression , Lipocalin-2/metabolism , Mice , Neoplasms/metabolism
2.
BMC Cancer ; 22(1): 920, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36008790

ABSTRACT

BACKGROUND: The incidence and mortality rate of rectal cancer are still high, the metastasis of rectal cancer are main causes of death. The control of the distant metastasis is one of the main concerns in the treatment of locally advanced rectal cancer, but there are few studies on predicting synchronous distant metastasis (SDM) of rectal cancer. METHOD: The data of patients with rectal adenocarcinoma confirmed by endoscopic biopsy or postoperative pathology from September 2015 to May 2020 in hospital A (center 1) and hospital B (center 2) were analyzed retrospectively, including age, sex, carcinoembryonic antigen, carbohydrate antigen 19-9, tumor location, tumor length, image staging and characteristics. The average age of the 169 patients consisting of 105 males and 64 females in study is 61.2 years. All patients underwent rectal routine rectal MRI, DKI and IVIM examinations on a 3.0-T scanner. Two radiologists sketched regions of interest (ROIs) on b = 1000 s/mm2 DKI and IVIM images to obtain quantitative parameters with FireVoxel manually. We evaluated the difference of histogram analysis, clinical and image data between SDM group and non-SDM group, and evaluated the efficacy of each index in predicting SDM of rectal cancer. RESULTS: The 90th percentile of f values in the SDM group is lower than that in the non-SDM group (29.4 ± 8.4% vs. 35 ± 17.8%, P = 0.005). CA19-9 in the SDM group is higher than that in the non-SDM group (P = 0.003). Low and high rectal cancer are more likely to develop SDM than middle rectal cancer (P = 0.05 and P = 0.047). The combination of these three indexes has a greater area under the curve (AUC) than any one index (0.801 vs. 0.685 (f (90th percentile)) and 0.627 (CA19-9), P = 0.0075 and 0.0058, respectively), and its specificity and sensitivity are 80.0% and 71.6%, respectively. When this combination is incorporated into the predictive nomogram model, the c-index is 0.801 (95% confidence interval (CI): 0.730-0.871). CONCLUSIONS: IVIM quantitative parameters combine with CA19-9 and tumor location can better predict the risk of SDM of rectal cancer.


Subject(s)
Diffusion Magnetic Resonance Imaging , Rectal Neoplasms , CA-19-9 Antigen , Diffusion Magnetic Resonance Imaging/methods , Female , Humans , Male , Middle Aged , Motion , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/pathology , Retrospective Studies
3.
Front Immunol ; 13: 952066, 2022.
Article in English | MEDLINE | ID: mdl-35874780

ABSTRACT

Patients with metastatic cancer refractory to standard systemic therapies have a poor prognosis and few therapeutic options. Radiotherapy can shape the tumor microenvironment (TME) by inducing immunogenic cell death and promoting tumor recognition by natural killer cells and T lymphocytes. Granulocyte macrophage-colony stimulating factor (GM-CSF) was known to promote dendric cell maturation and function, and might also induce the macrophage polarization with anti-tumor capabilities. A phase II trial (ChiCTR1900026175) was conducted to assess the clinical efficacy and safety of radiotherapy, PD-1 inhibitor and GM-CSF (PRaG regimen). This trial was registered at http://www.chictr.org.cn/index.aspx. A PRaG cycle consisted of 3 fractions of 5 or 8 Gy delivered for one metastatic lesion from day 1, followed by 200 µg subcutaneous injection of GM-CSF once daily for 2 weeks, and intravenous infusion of PD-1 inhibitor once within one week after completion of radiotherapy. The PRaG regimen was repeated every 21 days for at least two cycles. Once the PRaG therapy was completed, the patient continued PD-1 inhibitor monotherapy until confirmed disease progression or unacceptable toxicity. The primary endpoint was objective response rate (ORR). A total of 54 patients were enrolled with a median follow-up time of 16.4 months. The ORR was 16.7%, and the disease control rate was 46.3% in intent-to-treat patients. Median progression-free survival was 4.0 months (95% confidence interval [CI], 3.3 to 4.8), and median overall survival was 10.5 months (95% CI, 8.7 to 12.2). Grade 3 treatment-related adverse events occurred in five patients (10.0%) and grade 4 in one patient (2.0%). Therefore, the PRaG regimen was well tolerated with acceptable toxicity and may represent a promising salvage treatment for patients with chemotherapy-refractory solid tumors. It is likely that PRaG acts via heating upthe TME with radiotherapy and GM-CSF, which was further boosted by PD-1 inhibitors.


Subject(s)
Chemoradiotherapy , Neoplasms, Second Primary , Chemoradiotherapy/adverse effects , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Humans , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms, Second Primary/therapy , Salvage Therapy , Treatment Outcome , Tumor Microenvironment
4.
Nat Commun ; 13(1): 3837, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35788590

ABSTRACT

Single-cell analysis methods are valuable tools; however, current approaches do not easily enable live cell retrieval. That is a particular issue when further study of cells that were eliminated during experimentation could provide critical information. We report a clonal molecular barcoding method, called SunCatcher, that enables longitudinal tracking and live cell functional analysis. From complex cell populations, we generate single cell-derived clonal populations, infect each with a unique molecular barcode, and retain stocks of individual barcoded clones (BCs). We develop quantitative PCR-based and next-generation sequencing methods that we employ to identify and quantify BCs in vitro and in vivo. We apply SunCatcher to various breast cancer cell lines and combine respective BCs to create versions of the original cell lines. While the heterogeneous BC pools reproduce their original parental cell line proliferation and tumor progression rates, individual BCs are phenotypically and functionally diverse. Early spontaneous metastases can also be identified and quantified. SunCatcher thus provides a rapid and sensitive approach for studying live single-cell clones and clonal evolution, and performing functional analyses.


Subject(s)
High-Throughput Nucleotide Sequencing , Neoplasms , Cell Line , Clonal Evolution/genetics , Clone Cells , High-Throughput Nucleotide Sequencing/methods , Real-Time Polymerase Chain Reaction
5.
Blood Adv ; 6(20): 5668-5675, 2022 10 25.
Article in English | MEDLINE | ID: mdl-35482455

ABSTRACT

Programmed death ligand 1 (PD-L1) is an immune checkpoint protein that suppresses cytotoxic T lymphocytes and is often overexpressed in cancers. Due to favorable clinical trial results, immune checkpoint inhibition (ICI) is part of Food and Drug Administration approved immuno-oncology therapies; however, not all patients benefit from ICI therapy. High blood platelet-to-lymphocyte ratio has been associated with failure of ICI treatment, but whether platelets have a role in hindering ICI response is unclear. Here, we report that coculturing platelets with cancer cell lines increased protein and gene expression of tumor cell PD-L1, which was reduced by antiplatelet agents, such as aspirin and ticagrelor. Platelet cytokine arrays revealed that the well-established cytokines, including interferon-γ, were not the main regulators of platelet-mediated PD-L1 upregulation. Instead, the high molecular weight epidermal growth factor (EGF) is abundant in platelets, which caused an upregulation of tumor cell PD-L1. Both an EGF-neutralizing antibody and cetuximab (EGF receptor [EGFR] monoclonal antibody) inhibited platelet-induced increases in tumor cell PD-L1, suggesting that platelets induce tumor cell PD-L1 in an EGFR-dependent manner. Our data reveal a novel mechanism for platelets in tumor immune escape and warrant further investigation to determine if targeting platelets improves ICI therapeutic responses.


Subject(s)
B7-H1 Antigen , Neoplasms , United States , Humans , B7-H1 Antigen/metabolism , Epidermal Growth Factor/pharmacology , Interferon-gamma/pharmacology , Blood Platelets/metabolism , Immune Checkpoint Inhibitors , Immune Checkpoint Proteins , Cetuximab , Platelet Aggregation Inhibitors , Ticagrelor , ErbB Receptors/metabolism , Neoplasms/drug therapy , Aspirin , Antibodies, Neutralizing
6.
Matrix Biol ; 105: 104-126, 2022 01.
Article in English | MEDLINE | ID: mdl-34839002

ABSTRACT

Mammographically-detected breast density impacts breast cancer risk and progression, and fibrillar collagen is a key component of breast density. However, physiologic factors influencing collagen production in the breast are poorly understood. In female rats, we analyzed gene expression of the most abundantly expressed mammary collagens and collagen-associated proteins across a pregnancy, lactation, and weaning cycle. We identified a triphasic pattern of collagen gene regulation and evidence for reproductive state-dependent composition. An initial phase of collagen deposition occurred during pregnancy, followed by an active phase of collagen suppression during lactation. The third phase of collagen regulation occurred during weaning-induced mammary gland involution, which was characterized by increased collagen deposition. Concomitant changes in collagen protein abundance were confirmed by Masson's trichrome staining, second harmonic generation (SHG) imaging, and mass spectrometry. We observed similar reproductive-state dependent collagen patterns in human breast tissue obtained from premenopausal women. SHG analysis also revealed structural variation in collagen across a reproductive cycle, with higher packing density and more collagen fibers arranged perpendicular to the mammary epithelium in the involuting rat mammary gland compared to nulliparous and lactating glands. Involution was also characterized by high expression of the collagen cross-linking enzyme lysyl oxidase, which was associated with increased levels of cross-linked collagen. Breast cancer relevance is suggested, as we found that breast cancer diagnosed in recently postpartum women displayed gene expression signatures consistent with increased collagen deposition and crosslinking compared to breast cancers diagnosed in age-matched nulliparous women. Using publicly available data sets, we found this involution-like, collagen gene signature correlated with poor progression-free survival in breast cancer patients overall and in younger women. In sum, these findings of physiologic collagen regulation in the normal mammary gland may provide insight into normal breast function, the etiology of breast density, and inform breast cancer risk and outcomes.


Subject(s)
Breast Neoplasms , Animals , Breast/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Collagen/genetics , Collagen/metabolism , Female , Humans , Lactation/physiology , Mammary Glands, Animal/metabolism , Pregnancy , Rats
7.
Radiol Case Rep ; 16(8): 2103-2107, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34158903

ABSTRACT

Plexiform neurofibroma(PNF) is a rare benign tumor of the peripheral nerve, belonging to a subtype of neurofibroma. PNF is common in the head, neck and trunk. It is uncommonly observed in the mesentery. We report a case of mesenteric PNF in a 64-year-old man history of neurofibromatosis type I(NF1), which caused abdomen pain. In addition, the computer tomography(CT) and endoscopic ultrasonography(EUS) manifestations of mesenteric PNF were analyzed. The imaging appearance of a mesenteric plexiform neurofibroma is that many low-density (CT) /mixed echo (EUS) soft tissue masses surrounding the superior mesenteric artery, but not surrounding the superior mesenteric vein. Our case adds to the limited literature regarding NF1 presenting with mesenteric PNF. The computer tomography and endoscopic ultrasonography may facilitate confirma diagnosis of mesenteric PNF.

8.
J Immunother Cancer ; 6(1): 98, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30285905

ABSTRACT

BACKGROUND: Women diagnosed with breast cancer within 5 years postpartum (PPBC) have poorer prognosis than age matched nulliparous women, even after controlling for clinical variables known to impact disease outcomes. Through rodent modeling, the poor prognosis of PPBC has been attributed to physiologic mammary gland involution, which shapes a tumor promotional microenvironment through induction of wound-healing-like programs including myeloid cell recruitment. Previous studies utilizing immune compromised mice have shown that blocking prostaglandin synthesis reduces PPBC tumor progression in a tumor cell extrinsic manner. Given the reported roles of prostaglandins in myeloid and T cell biology, and the established importance of these immune cell populations in dictating tumor growth, we investigate the impact of involution on shaping the tumor immune milieu and its mitigation by ibuprofen in immune competent hosts. METHODS: In a syngeneic (D2A1) orthotopic Balb/c mouse model of PPBC, we characterized the impact of mammary gland involution and ibuprofen treatment on the immune milieu in tumors and draining lymph nodes utilizing flow cytometry, multiplex IHC, lipid mass spectroscopy and cytokine arrays. To further investigate the impact of ibuprofen on programming myeloid cell populations, we performed RNA-Seq on in vivo derived mammary myeloid cells from ibuprofen treated and untreated involution group mice. Further, we examined direct effects of ibuprofen through in vitro bone marrow derived myeloid cell cultures. RESULTS: Tumors implanted into the mammary involution microenvironment grow more rapidly and display a distinct immune milieu compared to tumors implanted into glands of nulliparous mice. This milieu is characterized by increased presence of immature monocytes and reduced numbers of T cells and is reversed upon ibuprofen treatment. Further, ibuprofen treatment enhances Th1 associated cytokines as well as promotes tumor border accumulation of T cells. Safety studies demonstrate ibuprofen does not impede gland involution, impact subsequent reproductive success, nor promote auto-reactivity as detected through auto-antibody and naïve T cell priming assays. CONCLUSIONS: Ibuprofen administration during the tumor promotional microenvironment of the involuting mammary gland reduces overall tumor growth and enhances anti-tumor immune characteristics while avoiding adverse autoimmune reactions. In sum, these studies implicate beneficial prophylactic use of ibuprofen during the pro-tumorigenic window of mammary gland involution.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Breast Neoplasms/drug therapy , Ibuprofen/therapeutic use , Macrophages/drug effects , T-Lymphocytes/drug effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Breast Neoplasms/pathology , Cell Differentiation , Female , Humans , Ibuprofen/pharmacology , Mice , Postpartum Period
9.
Methods Mol Biol ; 1783: E1, 2018.
Article in English | MEDLINE | ID: mdl-29992527

ABSTRACT

The original version of the book was inadvertently published with incorrect spelling of the author name "Qiuchen Guo" corrections. The author name has now been corrected and approved by the author.

10.
Methods Mol Biol ; 1783: 7-33, 2018.
Article in English | MEDLINE | ID: mdl-29767356

ABSTRACT

The development of genome-wide gene expression profiling technologies over the past two decades has produced great opportunity for researchers to explore the transcriptome and to better understand biological systems and their perturbation. In this chapter we provide an overview of microarray and massively parallel sequencing technologies and their application to gene expression analysis. We discuss factors that impact expression data generation and analysis that which should be considered in the application of these technology platforms. We further present the results of a simple illustration study to highlight performance similarities and differences in expression profiling of protein-coding mRNAs with each platform. Based on technical and analytical differences between the two platforms, reports in the literature comparing arrays and RNA-Seq for gene expression, and our own example study and experience, we provide recommendations for platform selection for gene expression studies.


Subject(s)
Gene Expression Profiling/methods , Genome, Human , Guidelines as Topic , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, RNA/methods , Transcriptome , Humans
11.
JCI Insight ; 2(6): e89206, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28352652

ABSTRACT

Women diagnosed with breast cancer within 5 years of childbirth have poorer prognosis than nulliparous or pregnant women. Weaning-induced breast involution is implicated, as the collagen-rich, immunosuppressive microenvironment of the involuting mammary gland is tumor promotional in mice. To investigate the role of mammary fibroblasts, isolated mammary PDGFRα+ cells from nulliparous and postweaning mice were assessed for activation phenotype and protumorigenic function. Fibroblast activation during involution was evident by increased expression of fibrillar collagens, lysyl oxidase, Tgfb1, and Cxcl12 genes. The ability of mammary tumors to grow in an isogenic, orthotopic transplant model was increased when tumor cells were coinjected with involution-derived compared with nulliparous-derived mammary fibroblasts. Mammary tumors in the involution-fibroblast group had increased Ly6C+ monocytes at the tumor border, and decreased CD8+ T cell infiltration and tumor cell death. Ibuprofen treatment suppressed involution-fibroblast activation and tumor promotional capacity, concurrent with decreases in tumor Ly6C+ monocytes, and increases in intratumoral CD8+ T cell infiltration, granzyme levels, and tumor cell death. In total, our data identify a COX/prostaglandin E2 (PGE2)-dependent activated mammary fibroblast within the involuting mammary gland that displays protumorigenic, immunosuppressive activity, identifying fibroblasts as potential targets for the prevention and treatment of postpartum breast cancer.


Subject(s)
Fibroblasts/cytology , Mammary Glands, Animal/cytology , Mammary Neoplasms, Experimental/pathology , Postpartum Period , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Disease Progression , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Ibuprofen/administration & dosage , Mammary Glands, Animal/metabolism , Mammary Neoplasms, Experimental/metabolism , Mice , Receptor, Platelet-Derived Growth Factor alpha/metabolism
12.
J Clin Med ; 6(1)2017 Jan 13.
Article in English | MEDLINE | ID: mdl-28098775

ABSTRACT

Transforming Growth Factor-ß (TGF-ß) signaling in cancer has been termed the "TGF-ß paradox", acting as both a tumor suppresser and promoter. The complexity of TGF-ß signaling within the tumor is context dependent, and greatly impacted by cellular crosstalk between TGF-ß responsive cells in the microenvironment including adjacent epithelial, endothelial, mesenchymal, and hematopoietic cells. Here we utilize normal, weaning-induced mammary gland involution as a tissue microenvironment model to study the complexity of TGF-ß function. This article reviews facets of mammary gland involution that are TGF-ß regulated, namely mammary epithelial cell death, immune activation, and extracellular matrix remodeling. We outline how distinct cellular responses and crosstalk between cell types during physiologically normal mammary gland involution contribute to simultaneous tumor suppressive and promotional microenvironments. We also highlight alternatives to direct TGF-ß blocking anti-cancer therapies with an emphasis on eliciting concerted microenvironmental-mediated tumor suppression.

13.
Int J Biochem Cell Biol ; 81(Pt A): 223-232, 2016 12.
Article in English | MEDLINE | ID: mdl-27771439

ABSTRACT

Normal epithelium exists within a dynamic extracellular matrix (ECM) that is tuned to regulate tissue specific epithelial cell function. As such, ECM contributes to tissue homeostasis, differentiation, and disease, including cancer. Though it is now recognized that the functional unit of normal and transformed epithelium is the epithelial cell and its adjacent ECM, we lack a basic understanding of tissue-specific ECM composition and abundance, as well as how physiologic changes in ECM impact cancer risk and outcomes. While traditional proteomic techniques have advanced to robustly identify ECM proteins within tissues, methods to determine absolute abundance have lagged. Here, with a focus on tissues relevant to breast cancer, we utilize mass spectrometry methods optimized for absolute quantitative ECM analysis. Employing an extensive protein extraction and digestion method, combined with stable isotope labeled Quantitative conCATamer (QconCAT) peptides that serve as internal standards for absolute quantification of protein, we quantify 98 ECM, ECM-associated, and cellular proteins in a single analytical run. In rodent models, we applied this approach to the primary site of breast cancer, the normal mammary gland, as well as a common and particularly deadly site of breast cancer metastasis, the liver. We find that mammary gland and liver have distinct ECM abundance and relative composition. Further, we show mammary gland ECM abundance and relative compositions differ across the reproductive cycle, with the most dramatic changes occurring during the pro-tumorigenic window of weaning-induced involution. Combined, this work suggests ECM candidates for investigation of breast cancer progression and metastasis, particularly in postpartum breast cancers that are characterized by high metastatic rates. Finally, we suggest that with use of absolute quantitative ECM proteomics to characterize tissues of interest, it will be possible to reconstruct more relevant in vitro models to investigate tumor-ECM dynamics at higher resolution.


Subject(s)
Cellular Microenvironment , Extracellular Matrix/metabolism , Liver/cytology , Mammary Glands, Animal/cytology , Proteomics , Animals , Female , Rats , Rats, Sprague-Dawley , Reproduction
14.
Article in English | MEDLINE | ID: mdl-26565340

ABSTRACT

We show that significant water wave amplification is obtained in a water resonator consisting of two spatially separated patches of small-amplitude sinusoidal corrugations on an otherwise flat seabed. The corrugations reflect the incident waves according to the so-called Bragg reflection mechanism, and the distance between the two sets controls whether the trapped reflected waves experience constructive or destructive interference within the resonator. The resulting amplification or suppression is enhanced with increasing number of ripples and is most effective for specific resonator lengths and at the Bragg frequency, which is determined by the corrugation period. Our analysis draws on the analogous mechanism that occurs between two partially reflecting mirrors in optics, a phenomenon named after its discoverers Charles Fabry and Alfred Perot.

15.
J Clin Invest ; 124(9): 3901-12, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25133426

ABSTRACT

Breast involution following pregnancy has been implicated in the high rates of metastasis observed in postpartum breast cancers; however, it is not clear how this remodeling process promotes metastasis. Here, we demonstrate that human postpartum breast cancers have increased peritumor lymphatic vessel density that correlates with increased frequency of lymph node metastases. Moreover, lymphatic vessel density was increased in normal postpartum breast tissue compared with tissue from nulliparous women. In rodents, mammary lymphangiogenesis was upregulated during weaning-induced mammary gland involution. Furthermore, breast cancer cells exposed to the involuting mammary microenvironment acquired prolymphangiogenic properties that contributed to peritumor lymphatic expansion, tumor size, invasion, and distant metastases. Finally, in rodent models of postpartum breast cancer, cyclooxygenase-2 (COX-2) inhibition during the involution window decreased normal mammary gland lymphangiogenesis, mammary tumor-associated lymphangiogenesis, tumor cell invasion into lymphatics, and metastasis. Our data indicate that physiologic COX-2-dependent lymphangiogenesis occurs in the postpartum mammary gland and suggest that tumors within this mammary microenvironment acquire enhanced prolymphangiogenic activity. Further, our results suggest that the prolymphangiogenic microenvironment of the postpartum mammary gland has potential as a target to inhibit metastasis and suggest that further study of the therapeutic efficacy of COX-2 inhibitors in postpartum breast cancer is warranted.


Subject(s)
Breast Neoplasms/pathology , Cyclooxygenase 2/physiology , Lymphangiogenesis/physiology , Puerperal Disorders/pathology , Animals , Breast Neoplasms/drug therapy , Celecoxib , Dinoprostone/biosynthesis , Disease Models, Animal , Female , Humans , Lymphatic Metastasis , Lymphatic Vessels/pathology , Mice , Mice, Inbred BALB C , Pregnancy , Pyrazoles/pharmacology , Sulfonamides/pharmacology , Tumor Microenvironment
16.
J Mammary Gland Biol Neoplasia ; 19(2): 213-28, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24952477

ABSTRACT

Postpartum mammary gland involution has been identified as tumor-promotional and is proposed to contribute to the increased rates of metastasis and poor survival observed in postpartum breast cancer patients. In rodent models, the involuting mammary gland microenvironment is sufficient to induce enhanced tumor cell growth, local invasion, and metastasis. Postpartum involution shares many attributes with wound healing, including upregulation of genes involved in immune responsiveness and infiltration of tissue by immune cells. In rodent models, treatment with non-steroidal anti-inflammatory drugs (NSAIDs) ameliorates the tumor-promotional effects of involution, consistent with the immune milieu of the involuting gland contributing to tumor promotion. Currently, immunotherapy is being investigated as a means of breast cancer treatment with the purpose of identifying ways to enhance anti-tumor immune responses. Here we review evidence for postpartum mammary gland involution being a uniquely defined 'hot-spot' of pro-tumorigenic immune cell infiltration, and propose that immunotherapy should be explored for prevention and treatment of breast cancers that arise in this environment.


Subject(s)
Breast Neoplasms/immunology , Mammary Glands, Animal/immunology , Mammary Glands, Human/immunology , Mammary Neoplasms, Animal/immunology , Postpartum Period/immunology , Animals , Female , Humans , Immunotherapy/methods
17.
Int J Nanomedicine ; 7: 3099-109, 2012.
Article in English | MEDLINE | ID: mdl-22802681

ABSTRACT

BACKGROUND: Recent studies have shown that the biological actions and toxicity of the water-soluble compound, polyhydroxyfullerene (fullerenol), are related to the concentrations present at a particular site of action. This study investigated the effects of different concentrations of fullerenol on cultured rat hippocampal neurons. METHODS AND RESULTS: Fullerenol at low concentrations significantly enhanced hippocampal neuron viability as tested by MTT assay and Hoechst 33342/propidium iodide double stain detection. At high concentrations, fullerenol induced apoptosis confirmed by Comet assay and assessment of caspase proteins. CONCLUSION: These findings suggest that fullerenol promotes cell death and protects against cell damage, depending on the concentration present. The concentration-dependent effects of fullerenol were mainly due to its influence on the reduction-oxidation pathway.


Subject(s)
Fullerenes/pharmacology , Hippocampus/drug effects , Neurons/drug effects , Aldehydes/metabolism , Animals , Apoptosis/drug effects , Caspases/metabolism , Cell Survival/drug effects , Comet Assay , Dose-Response Relationship, Drug , Fullerenes/toxicity , Glutathione/metabolism , Hippocampus/cytology , Lead/toxicity , Neurons/cytology , Neurons/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/toxicity , Neurotoxins/pharmacology , Neurotoxins/toxicity , Oxidative Stress , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...